Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biomedicines ; 11(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37189750

RESUMO

The survival rate of patients with osteosarcoma (OS) has not improved over the last 30 years. Mutations in the genes TP53, RB1 and c-Myc frequently occur in OS and enhance RNA Polymerase I (Pol I) activity, thus supporting uncontrolled cancer cell proliferation. We therefore hypothesised that Pol I inhibition may be an effective therapeutic strategy for this aggressive cancer. The Pol I inhibitor CX-5461 has demonstrated therapeutic efficacy in different cancers in pre-clinical and phase I clinical trials; thus, the effects were determined on ten human OS cell lines. Following characterisation using genome profiling and Western blotting, RNA Pol I activity, cell proliferation and cell cycle progression were evaluated in vitro, and the growth of TP53 wild-type and mutant tumours was measured in a murine allograft model and in two human xenograft OS models. CX-5461 treatment resulted in reduced ribosomal DNA (rDNA) transcription and Growth 2 (G2)-phase cell cycle arrest in all OS cell lines. Additionally, tumour growth in all allograft and xenograft OS models was effectively suppressed without apparent toxicity. Our study demonstrates the efficacy of Pol I inhibition against OS with varying genetic alterations. This study provides pre-clinical evidence to support this novel therapeutic approach in OS.

2.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36944419

RESUMO

Povidone-iodine (PVP-I) inactivates a broad range of pathogens. Despite its widespread use over decades, the safety of PVP-I remains controversial. Its extended use in the current SARS-CoV-2 virus pandemic urges the need to clarify safety features of PVP-I on a cellular level. Our investigation in epithelial, mesothelial, endothelial, and innate immune cells revealed that the toxicity of PVP-I is caused by diatomic iodine (I2), which is rapidly released from PVP-I to fuel organic halogenation with fast first-order kinetics. Eukaryotic toxicity manifests at below clinically used concentrations with a threshold of 0.1% PVP-I (wt/vol), equalling 1 mM of total available I2 Above this threshold, membrane disruption, loss of mitochondrial membrane potential, and abolition of oxidative phosphorylation induce a rapid form of cell death we propose to term iodoptosis. Furthermore, PVP-I attacks lipid rafts, leading to the failure of tight junctions and thereby compromising the barrier functions of surface-lining cells. Thus, the therapeutic window of PVP-I is considerably narrower than commonly believed. Our findings urge the reappraisal of PVP-I in clinical practice to avert unwarranted toxicity whilst safeguarding its benefits.


Assuntos
Anti-Infecciosos Locais , COVID-19 , Iodo , Humanos , Povidona-Iodo/farmacologia , Povidona-Iodo/uso terapêutico , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Iodo/farmacologia , SARS-CoV-2 , Morte Celular
3.
Transl Res ; 258: 60-71, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36921796

RESUMO

DICER1 mutations predispose to increased risk for various cancers, particularly pleuropulmonary blastoma (PPB), the commonest lung malignancy of childhood. There is a paucity of directly actionable molecular targets as these tumors are driven by loss-of-function mutations of DICER1. Therapeutic development for PPB is further limited by a lack of biologically and physiologically-representative disease models. Given recent evidence of Dicer's role as a haploinsufficient tumor suppressor regulating RNA polymerase I (Pol I), Pol I inhibition could abrogate mutant Dicer-mediated accumulation of stalled polymerases to trigger apoptosis. Hence, we developed a novel subpleural orthotopic PPB patient-derived xenograft (PDX) model that retained both RNase IIIa and IIIb hotspot mutations and recapitulated the cardiorespiratory physiology of intra-thoracic disease, and with it evaluated the tolerability and efficacy of first-in-class Pol I inhibitor CX-5461. In PDX tumors, CX-5461 significantly reduced H3K9 di-methylation and increased nuclear p53 expression, within 24 hours' exposure. Following treatment at the maximum tolerated dosing regimen (12 doses, 30 mg/kg), tumors were smaller and less hemorrhagic than controls, with significantly decreased cellular proliferation, and increased apoptosis. As demonstrated in a novel intrathoracic tumor model of PPB, Pol I inhibition with CX-5461 could be a tolerable and clinically-feasible therapeutic strategy for mutant Dicer tumors, inducing antitumor effects by decreasing H3K9 methylation and enhancing p53-mediated apoptosis.


Assuntos
Blastoma Pulmonar , RNA Polimerase I , Humanos , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Proteína Supressora de Tumor p53/genética , Blastoma Pulmonar/genética , Blastoma Pulmonar/metabolismo , Blastoma Pulmonar/patologia , Carcinogênese , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
4.
Cell Rep ; 41(5): 111571, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323262

RESUMO

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/genética , Nucléolo Celular/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
5.
Invest New Drugs ; 40(3): 529-536, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201535

RESUMO

BACKGROUND: Uterine leiomyosarcoma is a rare aggressive smooth muscle cancer with poor survival rates. RNA Polymerase I (Pol I) activity is elevated in many cancers supporting tumour growth and prior studies in uterine leiomyosarcoma revealed enlarged nucleoli and upregulated Pol I activity-related genes. This study aimed to investigate the anti-tumour potential of CX-5461, a Pol I transcription inhibitor currently being evaluated in clinical trials for several cancers, against the human uterine leiomyosarcoma cell line, SK-UT-1. METHODS: SK-UT-1 was characterised using genome profiling and western blotting. The anti-tumour effects of CX-5461 were investigated using cell proliferation assays, expression analysis using qRT-PCR, and BrdU/PI based cell cycle analysis. RESULTS: Genetic analysis of SK-UT-1 revealed mutations in TP53, RB1, PTEN, APC and TSC1 & 2, all potentially associated with increased Pol I activity. Protein expression analysis showed dysregulated p53, RB1 and c-Myc. CX-5461 treatment resulted in an anti-proliferation response, G2 phase cell-cycle arrest and on-target activity demonstrated by reduced ribosomal DNA transcription. CONCLUSIONS: SK-UT-1 was confirmed as a representative model of uterine leiomyosarcoma and CX-5461 has significant potential as a novel adjuvant for this rare cancer.


Assuntos
Benzotiazóis , Leiomiossarcoma , Naftiridinas , Neoplasias Uterinas , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Naftiridinas/farmacologia , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
6.
Br J Cancer ; 124(3): 616-627, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33173151

RESUMO

BACKGROUND: Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC. METHODS: Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC. RESULTS: We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo. CONCLUSIONS: Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.


Assuntos
Benzotiazóis/farmacologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Recombinação Homóloga , Naftiridinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , RNA Polimerase I/antagonistas & inibidores , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Genes BRCA2 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Interferência de RNA , RNA Polimerase I/genética
7.
EMBO J ; 39(21): e105111, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945574

RESUMO

Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.


Assuntos
Neoplasias/metabolismo , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Naftiridinas/farmacologia , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases , RNA Polimerase I/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico , Ribossomos/efeitos dos fármacos , Transcriptoma
8.
Cancer Res ; 80(17): 3706-3718, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32651259

RESUMO

The ability of the N-MYC transcription factor to drive cancer progression is well demonstrated in neuroblastoma, the most common extracranial pediatric solid tumor, where MYCN amplification heralds a poor prognosis, with only 11% of high-risk patients surviving past 5 years. However, decades of attempts of direct inhibition of N-MYC or its paralogues has led to the conclusion that this protein is "undruggable." Therefore, targeting pathways upregulated by N-MYC signaling presents an alternative therapeutic approach. Here, we show that MYCN-amplified neuroblastomas are characterized by elevated rates of protein synthesis and that high expression of ABCE1, a translation factor directly upregulated by N-MYC, is itself a strong predictor of poor clinical outcome. Despite the potent ability of N-MYC in heightening protein synthesis and malignant characteristics in cancer cells, suppression of ABCE1 alone selectively negated this effect, returning the rate of translation to baseline levels and significantly reducing the growth, motility, and invasiveness of MYCN-amplified neuroblastoma cells and patient-derived xenograft tumors in vivo. The growth of nonmalignant cells or MYCN-nonamplified neuroblastoma cells remained unaffected by reduced ABCE1, supporting a therapeutic window associated with targeting ABCE1. Neuroblastoma cells with c-MYC overexpression also required ABCE1 to maintain cell proliferation and translation. Taken together, ABCE1-mediated translation constitutes a critical process in the progression of N-MYC-driven and c-MYC-driven cancers that warrants investigations into methods of its therapeutic inhibition. SIGNIFICANCE: These findings demonstrate that N-MYC-driven cancers are reliant on elevated rates of protein synthesis driven by heightened expression of ABCE1, a vulnerability that can be exploited through suppression of ABCE1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Progressão da Doença , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Proteína Proto-Oncogênica N-Myc/metabolismo , Biossíntese de Proteínas , RNA Mensageiro
9.
Front Cell Dev Biol ; 8: 568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719798

RESUMO

Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.

10.
Nat Commun ; 11(1): 2641, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457376

RESUMO

Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.


Assuntos
Benzotiazóis/farmacologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Dano ao DNA , Naftiridinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Feminino , Xenoenxertos , Recombinação Homóloga , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Modelos Biológicos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , RNA Polimerase I/antagonistas & inibidores , Transcriptoma
11.
BMC Mol Cell Biol ; 21(1): 24, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245408

RESUMO

BACKGROUND: Progesterone Receptor Membrane Component 1 (PGRMC1) is expressed in many cancer cells, where it is associated with detrimental patient outcomes. It contains phosphorylated tyrosines which evolutionarily preceded deuterostome gastrulation and tissue differentiation mechanisms. RESULTS: We demonstrate that manipulating PGRMC1 phosphorylation status in MIA PaCa-2 (MP) cells imposes broad pleiotropic effects. Relative to parental cells over-expressing hemagglutinin-tagged wild-type (WT) PGRMC1-HA, cells expressing a PGRMC1-HA-S57A/S181A double mutant (DM) exhibited reduced levels of proteins involved in energy metabolism and mitochondrial function, and altered glucose metabolism suggesting modulation of the Warburg effect. This was associated with increased PI3K/AKT activity, altered cell shape, actin cytoskeleton, motility, and mitochondrial properties. An S57A/Y180F/S181A triple mutant (TM) indicated the involvement of Y180 in PI3K/AKT activation. Mutation of Y180F strongly attenuated subcutaneous xenograft tumor growth in NOD-SCID gamma mice. Elsewhere we demonstrate altered metabolism, mutation incidence, and epigenetic status in these cells. CONCLUSIONS: Altogether, these results indicate that mutational manipulation of PGRMC1 phosphorylation status exerts broad pleiotropic effects relevant to cancer and other cell biology.


Assuntos
Fosforilação , Receptores de Progesterona , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Forma Celular , Metabolismo Energético , Glicólise , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/metabolismo , Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Progesterona/biossíntese , Receptores de Progesterona/metabolismo
12.
Cells ; 9(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973211

RESUMO

Transcription of the ribosomal RNA genes (rDNA) that encode the three largest ribosomal RNAs (rRNA), is mediated by RNA Polymerase I (Pol I) and is a key regulatory step for ribosomal biogenesis. Although it has been reported over a century ago that the number and size of nucleoli, the site of ribosome biogenesis, are increased in cancer cells, the significance of this observation for cancer etiology was not understood. The realization that the increase in rRNA expression has an active role in cancer progression, not only through increased protein synthesis and thus proliferative capacity but also through control of cellular check points and chromatin structure, has opened up new therapeutic avenues for the treatment of cancer through direct targeting of Pol I transcription. In this review, we discuss the rational of targeting Pol I transcription for the treatment of cancer; review the current cancer therapeutics that target Pol I transcription and discuss the development of novel Pol I-specific inhibitors, their therapeutic potential, challenges and future prospects.


Assuntos
Neoplasias/enzimologia , Neoplasias/terapia , RNA Polimerase I/genética , Transcrição Gênica , Desenho de Fármacos , Humanos , Neoplasias/genética , Satisfação do Paciente , RNA Polimerase I/metabolismo , Ribossomos/metabolismo
13.
Cell Death Differ ; 27(2): 725-741, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31285545

RESUMO

Exquisite regulation of PI3K/AKT/mTORC1 signaling is essential for homeostatic control of cell growth, proliferation, and survival. Aberrant activation of this signaling network is an early driver of many sporadic human cancers. Paradoxically, sustained hyperactivation of the PI3K/AKT/mTORC1 pathway in nontransformed cells results in cellular senescence, which is a tumor-suppressive mechanism that must be overcome to promote malignant transformation. While oncogene-induced senescence (OIS) driven by excessive RAS/ERK signaling has been well studied, little is known about the mechanisms underpinning the AKT-induced senescence (AIS) response. Here, we utilize a combination of transcriptome and metabolic profiling to identify key signatures required to maintain AIS. We also employ a whole protein-coding genome RNAi screen for AIS escape, validating a subset of novel mediators and demonstrating their preferential specificity for AIS as compared with OIS. As proof of concept of the potential to exploit the AIS network, we show that neurofibromin 1 (NF1) is upregulated during AIS and its ability to suppress RAS/ERK signaling facilitates AIS maintenance. Furthermore, depletion of NF1 enhances transformation of p53-mutant epithelial cells expressing activated AKT, while its overexpression blocks transformation by inducing a senescent-like phenotype. Together, our findings reveal novel mechanistic insights into the control of AIS and identify putative senescence regulators that can potentially be targeted, with implications for new therapeutic options to treat PI3K/AKT/mTORC1-driven cancers.


Assuntos
Senescência Celular/genética , Proteínas Proto-Oncogênicas c-akt/genética , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais/genética
14.
Nat Commun ; 10(1): 5026, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690716

RESUMO

The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets.


Assuntos
Carcinogênese/genética , RNA Longo não Codificante/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Prognóstico , Biossíntese de Proteínas , Estabilidade Proteica , RNA Longo não Codificante/genética , Transcrição Gênica , Regulação para Cima/genética
15.
Assay Drug Dev Technol ; 16(6): 320-332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148664

RESUMO

The nucleolus is a dynamic subnuclear compartment that has a number of different functions, but its primary role is to coordinate the production and assembly of ribosomes. For well over 100 years, pathologists have used changes in nucleolar number and size to stage diseases such as cancer. New information about the nucleolus' broader role within the cell is leading to the development of drugs which directly target its structure as therapies for disease. Traditionally, it has been difficult to develop high-throughput image analysis pipelines to measure nucleolar changes due to the broad range of morphologies observed. In this study, we describe a simple high-content image analysis algorithm using Harmony software (PerkinElmer), with a PhenoLOGIC™ machine-learning component, that can measure and classify three different nucleolar morphologies based on nucleolin and fibrillarin staining ("normal," "peri-nucleolar rings" and "dispersed"). We have utilized this algorithm to determine the changes in these classes of nucleolar morphologies over time with drugs known to alter nucleolar structure. This approach could be further adapted to include other parameters required for the identification of new therapies that directly target the nucleolus.


Assuntos
Nucléolo Celular/patologia , Ensaios de Triagem em Larga Escala , Células A549 , Algoritmos , Nucléolo Celular/metabolismo , Humanos , Aprendizado de Máquina , Estresse Oxidativo , Software , Células Tumorais Cultivadas
16.
Bioessays ; 40(5): e1700233, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603296

RESUMO

Over the last decade, our appreciation of the importance of the nucleolus for cellular function has progressed from the ordinary to the extraordinary. We no longer think of the nucleolus as simply the site of ribosome production, or a dynamic subnuclear body noted by pathologists for its changes in size and shape with malignancy. Instead, the nucleolus has emerged as a key controller of many cellular processes that are fundamental to normal cell homeostasis and the target for dysregulation in many human diseases; in some cases, independent of its functions in ribosome biogenesis. These extra-nucleolar or new functions, which we term "non-canonical" to distinguish them from the more traditional role of the nucleolus in ribosome synthesis, are the focus of this review. In particular, we explore how these non-canonical functions may provide novel insights into human disease and in some cases new targets for therapeutic development.


Assuntos
Nucléolo Celular/metabolismo , Ribossomos/metabolismo , Humanos , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Biogênese de Organelas
17.
PLoS Negl Trop Dis ; 11(3): e0005432, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28263991

RESUMO

Trypanosoma brucei relies on an essential Variant Surface Glycoprotein (VSG) coat for survival in the mammalian bloodstream. High VSG expression within an expression site body (ESB) is mediated by RNA polymerase I (Pol I), which in other eukaryotes exclusively transcribes ribosomal RNA genes (rDNA). As T. brucei is reliant on Pol I for VSG transcription, we investigated Pol I transcription inhibitors for selective anti-trypanosomal activity. The Pol I inhibitors quarfloxin (CX-3543), CX-5461, and BMH-21 are currently under investigation for treating cancer, as rapidly dividing cancer cells are particularly dependent on high levels of Pol I transcription compared with nontransformed cells. In T. brucei all three Pol I inhibitors have IC50 concentrations for cell proliferation in the nanomolar range: quarfloxin (155 nM), CX-5461 (279 nM) or BMH-21 (134 nM) compared with IC50 concentrations in the MCF10A human breast epithelial cell line (4.44 µM, 6.89 µM or 460 nM, respectively). T. brucei was therefore 29-fold more sensitive to quarfloxin, 25-fold more sensitive to CX-5461 and 3.4-fold more sensitive to BMH-21. Cell death in T. brucei was due to rapid inhibition of Pol I transcription, as within 15 minutes treatment with the inhibitors rRNA precursor transcript was reduced 97-98% and VSG precursor transcript 91-94%. Incubation with Pol I transcription inhibitors also resulted in disintegration of the ESB as well as the nucleolus subnuclear structures, within one hour. Rapid ESB loss following the block in Pol I transcription argues that the ESB is a Pol I transcription nucleated structure, similar to the nucleolus. In addition to providing insight into Pol I transcription and ES control, Pol I transcription inhibitors potentially also provide new approaches to treat trypanosomiasis.


Assuntos
Inibidores Enzimáticos/farmacologia , RNA Polimerase I/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico , Concentração Inibidora 50
18.
Blood ; 129(21): 2882-2895, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28283481

RESUMO

Despite the development of novel drugs, the prospects for many patients with acute myeloid leukemia (AML) remain dismal. This study reveals that the selective inhibitor of RNA polymerase I (Pol I) transcription, CX-5461, effectively treats aggressive AML, including mixed-lineage leukemia-driven AML, and outperforms standard chemotherapies. In addition to the previously characterized mechanism of action of CX-5461 (ie, the induction of p53-dependent apoptotic cell death), the inhibition of Pol I transcription also demonstrates potent efficacy in p53null AML in vivo. This significant survival advantage in both p53WT and p53null leukemic mice treated with CX-5461 is associated with activation of the checkpoint kinases 1/2, an aberrant G2/M cell-cycle progression and induction of myeloid differentiation of the leukemic blasts. The ability to target the leukemic-initiating cell population is thought to be essential for lasting therapeutic benefit. Most strikingly, the acute inhibition of Pol I transcription reduces both the leukemic granulocyte-macrophage progenitor and leukemia-initiating cell (LIC) populations, and suppresses their clonogenic capacity. This suggests that dysregulated Pol I transcription is essential for the maintenance of their leukemia-initiating potential. Together, these findings demonstrate the therapeutic utility of this new class of inhibitors to treat highly aggressive AML by targeting LICs.


Assuntos
Benzotiazóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Naftiridinas/farmacologia , Células-Tronco Neoplásicas/enzimologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Animais , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Fase G2/efeitos dos fármacos , Fase G2/genética , Humanos , Leucemia Mieloide Aguda/epidemiologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Mutantes , Células-Tronco Neoplásicas/patologia , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Int J Mol Sci ; 18(1)2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28117679

RESUMO

Overall survival for patients with ovarian cancer (OC) has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC). HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR) and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC)-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC.


Assuntos
Benzotiazóis/uso terapêutico , Cistadenocarcinoma Seroso/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Naftiridinas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , RNA Ribossômico/antagonistas & inibidores , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Feminino , Humanos , Modelos Genéticos , Terapia de Alvo Molecular/tendências , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
20.
Gene ; 612: 36-48, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989772

RESUMO

Transcription of the ribosomal RNA genes (rDNA) by RNA polymerase I (Pol I) is a major control step for ribosome synthesis and is tightly linked to cellular growth. However, the question of whether this process is modulated primarily at the level of transcription initiation or elongation is controversial. Studies in markedly different cell types have identified either initiation or elongation as the major control point. In this study, we have re-examined this question in NIH3T3 fibroblasts using a combination of metabolic labeling of the 47S rRNA, chromatin immunoprecipitation analysis of Pol I and overexpression of the transcription initiation factor Rrn3. Acute manipulation of growth factor levels altered rRNA synthesis rates over 8-fold without changing Pol I loading onto the rDNA. In fact, robust changes in Pol I loading were only observed under conditions where inhibition of rDNA transcription was associated with chronic serum starvation or cell cycle arrest. Overexpression of the transcription initiation factor Rrn3 increased loading of Pol I on the rDNA but failed to enhance rRNA synthesis in either serum starved, serum treated or G0/G1 arrested cells. Together these data suggest that transcription elongation is rate limiting for rRNA synthesis. We propose that transcription initiation is required for rDNA transcription in response to cell cycle cues, whereas elongation controls the dynamic range of rRNA synthesis output in response to acute growth factor modulation.


Assuntos
Ciclo Celular , Divisão Celular , RNA Polimerase I/genética , Transcrição Gênica , Animais , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA