Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Expert Rev Mol Diagn ; 24(1-2): 23-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353446

RESUMO

INTRODUCTION: Osteoarthritis (OA) affects over 500 million people worldwide. OA patients are symptomatically treated, and current therapies exhibit marginal efficacy and frequently carry safety-risks associated with chronic use. No disease-modifying therapies have been approved to date leaving surgical joint replacement as a last resort. To enable effective patient care and successful drug development there is an urgent need to uncover the pathobiological drivers of OA and how these translate into disease endotypes. Endotypes provide a more precise and mechanistic definition of disease subgroups than observable phenotypes, and a panel of tissue- and pathology-specific biochemical markers may uncover treatable endotypes of OA. AREAS COVERED: We have searched PubMed for full-text articles written in English to provide an in-depth narrative review of a panel of validated biochemical markers utilized for endotyping of OA and their association to key OA pathologies. EXPERT OPINION: As utilized in IMI-APPROACH and validated in OAI-FNIH, a panel of biochemical markers may uncover disease subgroups and facilitate the enrichment of treatable molecular endotypes for recruitment in therapeutic clinical trials. Understanding the link between biochemical markers and patient-reported outcomes and treatable endotypes that may respond to given therapies will pave the way for new drug development in OA.


Assuntos
Osteoartrite , Humanos , Osteoartrite/diagnóstico , Osteoartrite/patologia , Biomarcadores , Fenótipo
2.
Cell Rep ; 43(1): 113608, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38117649

RESUMO

The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.


Assuntos
Antineoplásicos , Transtornos Mieloproliferativos , Neoplasias , Humanos , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Leucócitos Mononucleares/metabolismo , Hematopoese
3.
Nature ; 608(7924): 766-777, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948637

RESUMO

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Assuntos
Remodelamento Atrial , Montagem e Desmontagem da Cromatina , Perfilação da Expressão Gênica , Infarto do Miocárdio , Análise de Célula Única , Remodelação Ventricular , Remodelamento Atrial/genética , Estudos de Casos e Controles , Cromatina/genética , Epigenoma , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Tempo , Remodelação Ventricular/genética
4.
Sci Adv ; 8(5): eabl8920, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108055

RESUMO

Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications.


Assuntos
Dexametasona/farmacologia , Dipeptidases/genética , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Receptores de Glucocorticoides/metabolismo , Carbolinas/efeitos adversos , Carbolinas/farmacologia , Linhagem Celular , Dipeptidases/metabolismo , Imunofluorescência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Imunofenotipagem , Oxirredução/efeitos dos fármacos , Piperazinas/efeitos adversos , Piperazinas/farmacologia
5.
Front Immunol ; 13: 1066176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591270

RESUMO

Introduction: SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods: We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results: We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion: We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA