Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(30): eabo2405, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35895816

RESUMO

The mechanisms underlying decadal variability in Arctic sea ice remain actively debated. Here, we show that variability in boreal biomass burning (BB) emissions strongly influences simulated Arctic sea ice on multidecadal time scales. In particular, we find that a strong acceleration in sea ice decline in the early 21st century in the Community Earth System Model version 2 (CESM2) is related to increased variability in prescribed BB emissions in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) through summertime aerosol-cloud interactions. Furthermore, we find that more than half of the reported improvement in sea ice sensitivity to CO2 emissions and global warming from CMIP5 to CMIP6 can be attributed to the increased BB variability, at least in the CESM. These results highlight a new kind of uncertainty that needs to be considered when incorporating new observational data into model forcing while also raising questions about the role of BB emissions on the observed Arctic sea ice loss.

2.
Geosci Model Dev ; 10(9): 3207-3223, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30595813

RESUMO

Model calibration (or "tuning") is a necessary part of developing and testing coupled ocean-atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major U.S. climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present day radiative imbalance vs. the implied balance in the pre-industrial as a target.

3.
J Geophys Res Atmos ; 120(10): 4749-4763, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27656329

RESUMO

An analysis of diabatic heating and moistening processes from 12 to 36 h lead time forecasts from 12 Global Circulation Models are presented as part of the "Vertical structure and physical processes of the Madden-Julian Oscillation (MJO)" project. A lead time of 12-36 h is chosen to constrain the large-scale dynamics and thermodynamics to be close to observations while avoiding being too close to the initial spin-up of the models as they adjust to being driven from the Years of Tropical Convection (YOTC) analysis. A comparison of the vertical velocity and rainfall with the observations and YOTC analysis suggests that the phases of convection associated with the MJO are constrained in most models at this lead time although the rainfall in the suppressed phase is typically overestimated. Although the large-scale dynamics is reasonably constrained, moistening and heating profiles have large intermodel spread. In particular, there are large spreads in convective heating and moistening at midlevels during the transition to active convection. Radiative heating and cloud parameters have the largest relative spread across models at upper levels during the active phase. A detailed analysis of time step behavior shows that some models show strong intermittency in rainfall and differences in the precipitation and dynamics relationship between models. The wealth of model outputs archived during this project is a very valuable resource for model developers beyond the study of the MJO. In addition, the findings of this study can inform the design of process model experiments, and inform the priorities for field experiments and future observing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA