Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Scientifica (Cairo) ; 2024: 7939465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370144

RESUMO

Prickly pear serves as a significant source of income for farmers worldwide, with production taking place in temperate, subtropical, and cold regions. The objective of the present investigation is to explore the morphological parameters of Opuntia robusta and Opuntia dillenii which are resistant to the white cochineal (Dactylopius opuntiae), as well as the local prickly pear that is currently threatened with extinction. This investigation aims to evaluate the feasibility of replacing the endangered local prickly pear with the recently introduced species O. robusta and O. dillenii. This analysis is based on a comprehensive assessment of 26 qualitative and 25 quantitative traits pertaining to cladodes and fruits. In terms of species differentiation and the selection of discriminative features, this study demonstrates the effectiveness of various statistical methods, as well as the analysis carried out according to the descriptors recommended by the International Union for the Protection of New Varieties of Plants (UPOV). Of the 51 parameters evaluated, 13 qualitative and 23 quantitative characters are significant in differentiating the species under study. This underscores the importance of quantitative traits in distinguishing different prickly pear species. Furthermore, color is identified as a crucial characteristic for discriminating between the studied samples. O. robusta is characterized by its high fruit weight, large size, greater pulp content, and high pulp-to-peel ratio, all of which are desirable traits for fresh consumption. Additionally, O. robusta has the highest number of fully developed seeds, making it an attractive option for use in the cosmetic industry. This characteristic renders the O. robusta a potential substitute for the endangered ecotype . However, O. robusta is distinguished by its short stalk, which poses a challenge for fruit harvesting and leaves it susceptible to physical damage and quality loss. Conversely, O. dillenii displays a low pulp content, which serves as a critical indicator of fruit quality. The only desirable agronomic trait of this species is its elevated seed content, which has the potential for utilization in oil production for the cosmetic industry.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37979085

RESUMO

Zinc oxide nanoparticles (ZnONPs) are enormously popular semi-conductor metal oxides with diverse applications in every field of science. Many physical and chemical methods applied for the synthesis of ZnONPs are being rejected due to their environmental hazards. Therefore, ZnONPs synthesized from plant extracts are steered as eco-friendly showing more biocompatibility and biodegradability. Additionally, various synthesis conditions such as the type of precursor salt also play a role in influencing the physicochemical and biological properties of ZnONPs. In this study, green synthesis of ZnONPs from Acacia nilotica was carried out using zinc acetate (ZA-AN-ZNPs), zinc nitrate (ZN-AN-ZNPs), and zinc sulfate (ZS-AN-ZNPs) precursor salts. Surprisingly, characterization of ZnONPs using UV-visible spectroscopy, TEM, XRD, and EDX revealed the important role precursor salts played in influencing the size and shape of ZnONPs, i.e., 20-23 nm spherical (ZA-AN-ZNPs), 55-59 nm triangular (ZN-AN-ZNPs), and 94-97 nm nano-flowers (ZS-AN-ZNPs). FTIR analysis showed the involvement of alkaloids, alcohols, carboxylic acid, and phenolic compounds present in Acacia nilotica extract during the synthesis process. Since different precursor salts showed different morphology of ZnONPs, their biological activities were also variable. ZN-AN-ZNPs showed the highest cytotoxicity towards HepG2 cells with the lowest cell viability (28.92 ± 0.99%), highest ROS/RNS production (3425.3 ± 184.58 relative DHR123 fluorescence), and loss of mitochondrial membrane potential (1645.2 ± 32.12 relative fluorescence unit) as well as induced significant caspase-3 gene expression. In addition to this, studying the zone of inhibitions and minimum bactericidal and inhibitory concentrations of ZnONPs showed their exceptional potential as antibacterial agents. At MIC as low as 8 µg/mL, ZA-AN-ZNPs and ZN-AN-ZNPs exhibited significant bactericidal activities against human pathogens Klebsiella pneumoniae and Listeria monocytogenes, respectively. Furthermore, alkaline phosphatase, DNA/RNA leakage, and phosphate ion leakage studies revealed that a damage to the bacterial cell membrane and cell wall is involved in mediating the antibacterial effects of ZnONPs.

3.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836711

RESUMO

The primary purpose of this work was the initiation and optimization of shoot cultures of different Vitis vinifera L. cultivars: cv. Chardonnay, cv. Hibernal, cv. Riesling, cv. Johanniter, cv. Solaris, cv. Cabernet Cortis, and cv. Regent. Cultures were maintained on 30-day growth cycles using two media, Murashige and Skoog (MS) and Schenk and Hildebrandt (SH), with various concentrations of plant growth regulators. Tested media ('W1'-'W4') contained varying concentrations of 6-benzylaminopurine (BA) in addition to indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). High performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used for metabolomic profiling. In all tested extracts, 45 compounds were identified (6 amino acids, 4 phenolic acids, 13 flavan-3-ols, 3 flavonols, and 19 stilbenoids). Principal component analysis (PCA) was performed to assess the influence of the genotype and medium on metabolic content. PCA showed that metabolic content was mainly influenced by genotype and to a lesser extent by medium composition. MS media variants induced the amino acid, procyanidin, and flavan-3-ol production. In addition, the antioxidant potential and anti-tyrosinase activity was measured spectrophotometrically. The studies on antioxidant activity clearly reveal very high efficiency in reducing free radicals in the tested extracts. The strongest tyrosinase inhibition capacity was proved for shoots cv. Hibernal cultured in SH medium and supplemented with NAA, with an inhibition of 17.50%. These studies show that in vitro cultures of V. vinifera cvs. can be proposed as an alternative source of plant material that can be potentially used in cosmetic industry.


Assuntos
Vitis , Vitis/química , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Compostos Fitoquímicos , Cromatografia Líquida de Alta Pressão
4.
Plants (Basel) ; 12(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37514345

RESUMO

Arsenic (As) is one of the toxic heavy metal pollutants found in the environment. An excess of As poses serious threats to plants and diminishes their growth and productivity. NAC transcription factors revealed a pivotal role in enhancing crops tolerance to different environmental stresses. The present study investigated, for the first time, the functional role of SNAC3 in boosting As stress tolerance and grain productivity in rice (Oryza sativa L.). Two SNAC3-overexpressing (SNAC3-OX) and two SNAC3-RNAi transgenic lines were created and validated. The wild-type and transgenic rice plants were exposed to different As stress levels (0, 25, and 50 µM). The results revealed that SNAC3 overexpression significantly improved rice tolerance to As stress and boosted grain yield traits. Under both levels of As stress (25 and 50 µM), SNAC3-OX rice lines exhibited significantly lower levels of oxidative stress biomarkers and OsCRY1b (cryptochrome 1b) expression, but they revealed increased levels of gas exchange characters, chlorophyll, osmolytes (soluble sugars, proteins, proline, phenols, and flavonoids), antioxidant enzymes (SOD, CAT, APX, and POD), and stress-tolerant genes expression (OsSOD-Cu/Zn, OsCATA, OsCATB, OsAPX2, OsLEA3, OsDREB2B, OsDREB2A, OsSNAC2, and OsSNAC1) in comparison to wild-type plants. By contrast, SNAC3 suppression (RNAi) reduced grain yield components and reversed the aforementioned measured physio-biochemical and molecular traits. Taken together, this study is the first to demonstrate that SNAC3 plays a vital role in boosting As stress resistance and grain productivity in rice through modulating antioxidants, photosynthesis, osmolyte accumulation, and stress-related genes expression, and may be a useful candidate for further genetic enhancement of stress resistance in many crops.

5.
Plants (Basel) ; 12(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299089

RESUMO

Heavy metal stress, including from chromium, has detrimental effects on crop growth and yields worldwide. Plant growth-promoting rhizobacteria (PGPR) have demonstrated great efficiency in mitigating these adverse effects. The present study investigated the potential of the PGPR strain Azospirillum brasilense EMCC1454 as a useful bio-inoculant for boosting the growth, performance and chromium stress tolerance of chickpea (Cicer arietinum L.) plants exposed to varying levels of chromium stress (0, 130 and 260 µM K2Cr2O7). The results revealed that A. brasilense EMCC1454 could tolerate chromium stress up to 260 µM and exhibited various plant growth-promoting (PGP) activities, including nitrogen fixation, phosphate solubilization, and generation of siderophore, trehalose, exopolysaccharide, ACC deaminase, indole acetic acid, and hydrolytic enzymes. Chromium stress doses induced the formation of PGP substances and antioxidants in A. brasilense EMCC1454. In addition, plant growth experiments showed that chromium stress significantly inhibited the growth, minerals acquisition, leaf relative water content, biosynthesis of photosynthetic pigments, gas exchange traits, and levels of phenolics and flavonoids of chickpea plants. Contrarily, it increased the concentrations of proline, glycine betaine, soluble sugars, proteins, oxidative stress markers, and enzymatic (CAT, APX, SOD, and POD) and non-enzymatic (ascorbic acid and glutathione) antioxidants in plants. On the other hand, A. brasilense EMCC1454 application alleviated oxidative stress markers and significantly boosted the growth traits, gas exchange characteristics, nutrient acquisition, osmolyte formation, and enzymatic and non-enzymatic antioxidants in chromium-stressed plants. Moreover, this bacterial inoculation upregulated the expression of genes related to stress tolerance (CAT, SOD, APX, CHS, DREB2A, CHI, and PAL). Overall, the current study demonstrated the effectiveness of A. brasilense EMCC1454 in enhancing plant growth and mitigating chromium toxicity impacts on chickpea plants grown under chromium stress circumstances by modulating the antioxidant machinery, photosynthesis, osmolyte production, and stress-related gene expression.

6.
Front Mol Biosci ; 10: 1157558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304067

RESUMO

Plants, with their range of pharmacologically active molecules, represent the most promising source for the production of new anticancer drugs and for the formulation of adjuvants in chemotherapy treatments to reduce drug content and/or counteract the side effects of chemotherapy. Casticin is a major bioactive flavonoid isolated from several plants, mainly from the Vitex species. This compound is well known for its anti-inflammatory and antioxidant properties, which are mainly exploited in traditional medicine. Recently, the antineoplastic potential of casticin has attracted the attention of the scientific community for its ability to target multiple cancer pathways. The purpose of this review is, therefore, to present and critically analyze the antineoplastic potential of casticin, highlighting the molecular pathways underlying its antitumor effects. Bibliometric data were extracted from the Scopus database using the search strings "casticin" and "cancer" and analyzed using VOSviewer software to generate network maps to visualize the results. Overall, more than 50% of the articles were published since 2018 and even more recent studies have expanded the knowledge of casticin's antitumor activity by adding interesting new mechanisms of action as a topoisomerase IIα inhibitor, DNA methylase 1 inhibitor, and an upregulator of the onco-suppressive miR-338-3p. Casticin counteracts cancer progression through the induction of apoptosis, cell cycle arrest, and metastasis arrest, acting on several pathways that are generally dysregulated in different types of cancer. In addition, they highlight that casticin can be considered as a promising epigenetic drug candidate to target not only cancer cells but also cancer stem-like cells.

7.
Front Pharmacol ; 14: 1157306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229270

RESUMO

Over the years, many biological and synthetic agents have been explored and tested in attempts to halt the spread of cancer and/or cure it. Currently, several natural compounds have and are being considered in this regard. For example, paclitaxel is a potent anticancer drug that originates from the tree Taxus brevifolia. Paclitaxel has several derivatives, namely, docetaxel and cabazitaxel. These agents work by disrupting microtubule assembling dynamics and inducing cell cycle arrest at the G2/M phase of the cell cycle, ultimately triggering apoptosis. Such features have helped to establish paclitaxel as an authoritative therapeutic compound against neoplastic disorders. After the completion of compound (hemi) synthesis, this drug received approval for the treatment of solid tumors either alone or in combination with other agents. In this review, we explore the mechanisms of action of paclitaxel and its derivatives, the different formulations available, as well as the molecular pathways of cancer resistance, potential risks, and other therapeutic applications. In addition, the role of paclitaxel in hematological malignancies is explored, and potential limitations in the therapeutic use of paclitaxel at the clinical level are examined. Furthermore, paclitaxel is known to cause increased antigen presentation. The immunomodulatory potential of taxanes, alone or in combination with other pharmacologic agents, is explored. Despite terpene-alkaloids derivatives' anti-mitotic potential, the impact of this class of drugs on other oncogenic pathways, such as epithelial-to-mesenchymal transition and the epigenetic modulation of the transcription profile of cancer cells, is also analyzed, shedding light on potential future chemotherapeutic approaches to cancer.

8.
Biosensors (Basel) ; 13(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185525

RESUMO

Thalassemia is a monogenic autosomal recessive disorder caused by mutations, which lead to abnormal or reduced production of hemoglobin. Ineffective erythropoiesis, hemolysis, hepcidin suppression, and iron overload are common manifestations that vary according to genotypes and dictate, which diagnosis and therapeutic modalities, including transfusion therapy, iron chelation therapy, HbF induction, gene therapy, and editing, are performed. These conventional therapeutic methods have proven to be effective, yet have several disadvantages, specifically iron toxicity, associated with them; therefore, there are demands for advanced therapeutic methods. Nanotechnology-based applications, such as the use of nanoparticles and nanomedicines for theragnostic purposes have emerged that are simple, convenient, and cost-effective methods. The therapeutic potential of various nanoparticles has been explored by developing artificial hemoglobin, nano-based iron chelating agents, and nanocarriers for globin gene editing by CRISPR/Cas9. Au, Ag, carbon, graphene, silicon, porous nanoparticles, dendrimers, hydrogels, quantum dots, etc., have been used in electrochemical biosensors development for diagnosis of thalassemia, quantification of hemoglobin in these patients, and analysis of conventional iron chelating agents. This review summarizes the potential of nanotechnology in the development of various theragnostic approaches to determine thalassemia-causing gene mutations using various nano-based biosensors along with the employment of efficacious nano-based therapeutic procedures, in contrast to conventional therapies.


Assuntos
Eritropoese , Talassemia , Humanos , Talassemia/diagnóstico , Talassemia/terapia , Talassemia/complicações , Quelantes de Ferro/uso terapêutico , Hemoglobinas , Ferro
9.
Artigo em Inglês | MEDLINE | ID: mdl-37215635

RESUMO

Calycotome villosa subsp. intermedia is used in traditional medicine for the prevention and self-treatment of a variety of illnesses, including diabetes mellitus, obesity, and hypertension. The present study aims to investigate the in vivo, ex vivo, and in vitro hypoglycemic and hypotensive effects of the lyophilized aqueous extract of Calycotome villosa subsp. intermedia seeds (CV) on Meriones shawi submitted to hypercaloric diet and physical inactivity (HCD/PI) for 12 weeks. This diet induces a type 2 diabetes/metabolic syndrome phenotype with hypertension. Furthermore, HCD/PI decreased aorta contraction due to noradrenaline, enhanced L-arginine, and depressed insulin-evoked relaxation, while the relaxing effects of the NO donor SNAP and of diazoxide were unchanged. In vivo experiments showed that the oral administration of the CV extract (50 mg/kg b.wt) for 3 consecutive weeks significantly attenuated the development of type 2 diabetes, obesity, dyslipidemia, and hypertension. These effects may involve the improvement of lipid metabolism, insulin sensitivity, systolic arterial pressure, and urine output. Additionally, ex vivo and in vitro investigations revealed that CV treatment improved vascular contraction to noradrenaline, induced a slight aorta relaxation in response to carbachol, increased the vasorelaxation effect evoked by insulin, and depressed the L-arginine evoked relaxation. However, CV did not change the endothelium-independent vasorelaxation response evoked by SNAP or diazoxide. Hence, the present study provides useful information and supports the traditional use of CV in the prevention and self-treatment of numerous ailments. Overall, it can be concluded that Calycotome villosa subsp. intermedia seed extracts might be useful in the management of type 2 diabetes and hypertension.

10.
Biomed Pharmacother ; 162: 114687, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062215

RESUMO

Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.


Assuntos
Lamiaceae , Neoplasias , Humanos , Extratos Vegetais/farmacologia , Plantas/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico , Ácido Rosmarínico
11.
Plants (Basel) ; 12(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111857

RESUMO

Flaxseed (Linum usitatissimum L.) is a plant with a wide range of medicinal, health, nutritional, and industrial uses. This study assessed the genetic potential of yellow and brown seeds in thirty F4 families under different water conditions concerning seed yield, oil, protein, fiber, mucilage, and lignans content. Water stress negatively affected seed and oil yield, while it positively affected mucilage, protein, lignans, and fiber content. The total mean comparison showed that under normal moisture conditions, seed yield (209.87 g/m2) and most quality traits, including oil (30.97%), secoisolariciresinol diglucoside (13.89 mg/g), amino acids such as arginine (1.17%) and histidine (1.95%), and mucilage (9.57 g/100 g) were higher in yellow-seeded genotypes than the brown ones ((188.78 g/m2), (30.10%), (11.66 mg/g), (0.62%), (1.87%), and (9.35 g/100 g), respectively). Under water stress conditions, brown-seeded genotypes had a higher amount of fiber (16.74%), seed yield (140.04 g/m2), protein (239.02 mg. g-1), methionine (5.04%), and secondary metabolites such as secoisolariciresinol diglucoside (17.09 mg/g), while their amounts in families with yellow seeds were 14.79%, 117.33 g/m2, 217.12 mg. g-1, 4.34%, and 13.98 mg/g, respectively. Based on the intended food goals, different seed color genotypes may be appropriate for cultivation under different moisture environments.

12.
Plants (Basel) ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111930

RESUMO

Potatoes are a staple food with high antioxidant properties that can positively affect population health. The beneficial effects of potatoes have been attributed to tuber quality. However, the tuber quality related researches at genetic levels are very few. Sexual hybridization is a powerful strategy for producing new and valuable genotypes with high quality. In this study, 42 breeding potato genotypes in Iran were selected based on appearance characteristics such as shape, size, color, eyes of tubers, and tuber yield and marketability. The tubers were evaluated for their nutritional value and properties, viz. phenolic content, flavonoids, carotenoids, vitamins, sugars, proteins, and antioxidant activity. Potato tubers with white flesh and colored skin had significantly higher levels of ascorbic acid and total sugar. The result showed that higher phenolic, flavonoid, carotenoid, protein concentration, and antioxidant activity were noted in yellow-fleshed. Burren (yellow-fleshed) tubers had more antioxidant capacity in comparison to genotypes and cultivars, which did not differ significantly with genotypes 58, 68, 67 (light yellow), 26, 22, and 12 (white). The highest correlation coefficients in antioxidant compounds were related to total phenol content and FRAP, suggesting that phenolics might be crucial predictors of antioxidant activities. The concentration of antioxidant compounds in the breeding genotypes was higher than in some commercial cultivars, and higher antioxidant compounds content and activity were detected in yellow-fleshed cultivars. Based on current results, understanding the relationship between antioxidant compounds and the antioxidant activity of potatoes could be very helpful in potato breeding projects.

13.
Antibiotics (Basel) ; 12(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37107017

RESUMO

Ptychotis verticillata Duby, referred to as Nûnkha in the local language, is a medicinal plant that is native to Morocco. This particular plant is a member of the Apiaceae family and has a longstanding history in traditional medicine and has been utilized for therapeutic purposes by practitioners for generations. The goal of this research is to uncover the phytochemical makeup of the essential oil extracted from P. verticillata, which is indigenous to the Touissite region in Eastern Morocco. The extraction of the essential oil of P. verticillata (PVEO) was accomplished through the use of hydro-distillation via a Clevenger apparatus. The chemical profile of the essential oil was then determined through analysis utilizing gas chromatography-mass spectrometry (GC/MS). The study findings indicated that the essential oil of P. verticillata is composed primarily of Carvacrol (37.05%), D-Limonene (22.97%), γ-Terpinene (15.97%), m-Cymene (12.14%) and Thymol (8.49%). The in vitro antioxidant potential of PVEO was evaluated using two methods: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical trapping assay and the ferric reducing antioxidant power (FRAP) method. The data demonstrated considerable radical scavenging and relative antioxidative power. Escherichia coli, Staphylococcus aureus, Listeria innocua, and Pseudomonas aeruginosa were the most susceptible bacterial strains tested, while Geotrichum candidum, Candida albicans, and Rhodotorula glutinis were the most resilient fungi strains. PVEO had broad-spectrum antifungal and antibacterial properties. To elucidate the antioxidative and antibacterial characteristics of the identified molecules, we applied the methodology of molecular docking, a computational approach that forecasts the binding of a small molecule to a protein. Additionally, we utilized the Prediction of Activity Spectra for Substances (PASS) algorithm; Absorption, Distribution, Metabolism, and Excretion (ADME); and Pro-Tox II (to predict the toxicity in silico) tests to demonstrate PVEO's identified compounds' drug-likeness, pharmacokinetic properties, the anticipated safety features after ingestion, and the potential pharmacological activity. Finally, our findings scientifically confirm the ethnomedicinal usage and usefulness of this plant, which may be a promising source for future pharmaceutical development.

14.
J Funct Biomater ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37103312

RESUMO

Aflatoxins produced by some species of Aspergillus are considered secondary toxic fungal by-products in feeds and food. Over the past few decades, many experts have focused on preventing the production of aflatoxins by Aspergillus ochraceus and also reducing its toxicity. Applications of various nanomaterials in preventing the production of these toxic aflatoxins have received a lot of attention recently. The purpose of this study was to ascertain the protective impact of Juglans-regia-mediated silver nanoparticles (AgNPs) against Aspergillus-ochraceus-induced toxicity by exhibiting strong antifungal activity in in vitro (wheat seeds) and in vivo (Albino rats) settings. For the synthesis of AgNPs, the leaf extract of J. regia enriched with high phenolic (72.68 ± 2.13 mg GAE/g DW) and flavonoid (18.89 ± 0.31 mg QE/g DW) contents was used. Synthesized AgNPs were characterized by various techniques, including TEM, EDX, FT-IR, and XRD, which revealed that the particles were spherical in shape with no agglomeration and fine particle size in the range of 16-20 nm. In vitro antifungal activity of AgNPs was tested on wheat grains by inhibiting the production of toxic aflatoxins by A. ochraceus. According to the results obtained from High-Performance Liquid Chromatography (HPLC) and Thin-Layer Chromatography (TLC) analyses, there was a correlation between the concentration of AgNPs and a decrease in the production of aflatoxin G1, B1, and G2. For in vivo antifungal activity, Albino rats were administrated with different doses of AgNPs in five groups. The results indicated that the feed concentration of 50 µg/kg feed of AgNPs was more effective in improving the disturbed levels of different functional parameters of the liver (alanine transaminase (ALT): 54.0 ± 3.79 U/L and aspartate transaminase (AST): 206 ± 8.69 U/L) and kidney (creatinine 0.49 ± 0.020 U/L and BUN 35.7 ± 1.45 U/L), as well as the lipid profile (LDL 22.3 ± 1.45 U/L and HDL 26.3 ± 2.33 U/L). Furthermore, the histopathological analysis of various organs also revealed that the production of aflatoxins was successfully inhibited by AgNPs. It was concluded that the harmful effects of aflatoxins produced by A. ochraceus can be successfully neutralized by using J. regia-mediated AgNPs.

15.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111332

RESUMO

Ziziphus lotus (L.) Lam. (Rhamnaceae) is a plant species found across the Mediterranean area. This comprehensive overview aims to summarize the botanical description and ethnobotanical uses of Z. lotus and its phytochemical compounds derived with recent updates on its pharmacological and toxicological properties. The data were collected from electronic databases including the Web of Science, PubMed, ScienceDirect, Scopus, SpringerLink, and Google Scholars. It can be seen from the literature that Z. lotus is traditionally used to treat and prevent several diseases including diabetes, digestive problems, urinary tract problems, infectious diseases, cardiovascular disorders, neurological diseases, and dermal problems. The extracts of Z. lotus demonstrated several pharmacological properties in vitro and in vivo such as antidiabetic, anticancer, anti-oxidant, antimicrobials, anti-inflammatory, immunomodulatory, analgesic, anti-proliferative, anti-spasmodic, hepatoprotective, and nephroprotective effects. The phytochemical characterization of Z. lotus extracts revealed the presence of over 181 bioactive compounds including terpenoids, polyphenols, flavonoids, alkaloids, and fatty acids. Toxicity studies on Z. lotus showed that extracts from this plant are safe and free from toxicity. Thus, further research is needed to establish a possible relationship between traditional uses, plant chemistry, and pharmacological properties. Furthermore, Z. lotus is quite promising as a medicinal agent, so further clinical trials should be conducted to prove its efficacy.

16.
Antioxidants (Basel) ; 12(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36978805

RESUMO

Bee pollen is a hive product made up of flower pollen grains, nectar, and bee salivary secretions that beekeepers can collect without damaging the hive. Bee pollen, also called bee-collected pollen, contains a wide range of nutritious elements, including proteins, carbs, lipids, and dietary fibers, as well as bioactive micronutrients including vitamins, minerals, phenolic, and volatile compounds. Because of this composition of high quality, this product has been gaining prominence as a functional food, and studies have been conducted to show and establish its therapeutic potential for medical and food applications. In this context, this work aimed to provide a meticulous summary of the most relevant data about bee pollen, its composition-especially the phenolic compounds-and its biological and/or therapeutic properties as well as the involved molecular pathways.

17.
Front Biosci (Schol Ed) ; 15(1): 1, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36959109

RESUMO

Traditional herbal medicine is still used for basic healthcare by a significant portion of the population in developing countries. This study aimed to explore the medicinal plant's diversity and to document related traditional knowledge in the Safi region of Morocco. We used semi-structured questionnaires to interview 222 informants living in the study area. To perform data analysis, we used quantitative indices like use value (UV), family use value (FUV), fidelity level (FL), the relative popularity level (RPL), rank of order priority (ROP), and informant consensus factor (ICF). We reported the ethnomedicinal uses of 144 medicinal plants belonging to 64 families. According to the findings, the dominating families were Lamiaceae (17 taxa), Asteraceae (15 taxa), and Apiaceae (12 taxa). The most commonly utilized plant part (48%) was leaves. The decoction was reported as the main preparation method (42%). Highly cited plant species were Marrubium vulgare (UV = 0.56), Salvia rosmarinus Spenn. (UV = 0.47), Thymus serpyllum (UV = 0.32), and Dysphania ambrosioides (UV = 0.29). Papaveraceae (FUV = 0.26), and Urticaceae (FUV= 0.23), Geraniaceae (FUV = 0.17), Oleaceae (FUV = 0.17), Lamiaceae (FUV = 0.17) had the highest family use-values. Gastrointestinal disorders (88%), respiratory diseases (85%), and anemia (66%) have the greatest ICF values. This study reveals the indigenous people's reliance on plant-derived traditional medicine to prevent, alleviate, and treat a broad range of health concerns. Our findings will provide a scientific basis for ethnomedicinal legacy conservation and further scientific investigations aimed at new natural bioactive molecules discovery.


Assuntos
Lamiaceae , Plantas Medicinais , Humanos , Etnobotânica/métodos , Fitoterapia/métodos , Marrocos , Medicina Tradicional/métodos
18.
Front Biosci (Schol Ed) ; 15(1): 4, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36959112

RESUMO

Herbal medicine was used since the old time in the treatment of different types of diseases in Sefrou province, Morocco. However, few studies have been carried out to identify local medicinal flora and to scientifically document the knowledge of the traditional use of these medicinal plants by the population. This study aims to investigate the medicinal plants in Sefrou province, record their usage in folk medicine by the population and evaluate the hypotensive effect of selected plants using in vitro vascular activity. For that, an ethnobotanical survey was conducted among the Arabs and Amazighs population of Sefrou province from January 2017 to December 2018. The survey was conducted through oral interviews with a structured questionnaire. It covered those who knew and/or used plants for medicinal purposes, retailers, and wholesalers, and also included ecological repartition as well as the mode of administration. Then we selected some plants to evaluate the antihypertensive activity based on the in vitro bioassay. A total of 134 medicinal plants belonging to 52 families were identified; 61% are wild species, 49 (36%) are cultivated and 4 (3%) are cultivated as well as spontaneous. Medicinal plants used in Sefrou folk medicine have been investigated for their antihypertensive activity. They were selected based on their usage as cardiotonic, diuretics, and other uses related to the symptoms of hypertension. Most of the plants tested in this study were found to be more sensitive to relaxing contractions induced by noradrenaline. Out of 32 species examined, 14 (44%) showed more than 50% inhibition in isolated rat aortic rings, the vasorelaxant activity of these plants used for the screening was mostly inhibited by pre-treatment with N-ω-nitro-L-arginine (L-NOArg). The plants inventoried are alleged to be active against 104 therapeutic indications. Nine common symptoms are widely treated in indigenous pharmacopeia: gastrointestinal (19 plants), renal (27 plants), broncho-pulmonary system (7 plants), skin (13 species), diabetes (12 plants), cardiovascular (13 plants), eye, ear, nose, teeth, and throat diseases (5 plants); gynecological disorders (6 plants); rheumatism and gnawing pain (11 plants). 14% (19 species) of the plant inventoried are traded on a large scale and scope and more than 90 percent of the medicinal plants purchased from Sefrou go to big cities for export. The expansion of unregulated trade and commercial use of medicinal and aromatic plants poses a major threat to biodiversity in the region. Overall, people in Sefrou hold rich knowledge of herbal medicine. The vasorelaxant activity proved for the documented plants will provide a basis for other preclinical and clinical investigations.


Assuntos
Plantas Medicinais , Animais , Ratos , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Fitoterapia , Marrocos , Inquéritos e Questionários , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Vasodilatadores
19.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771159

RESUMO

Moringa oleifera, also called miracle tree, is a pharmaceutically important plant with a multitude of nutritional, medicinal, and therapeutic attributes. In the current study, an in-vitro-based elicitation approach was used to enhance the commercially viable bioactive compounds in an in vitro callus culture of M. oleifera. The callus culture was established and exposed to different monochromatic lights to assess the potentially interactive effects on biomass productions, biosynthesis of pharmaceutically valuable secondary metabolites, and antioxidant activity. Optimum biomass production (16.7 g/L dry weight), total phenolic contents (TPC: 18.03 mg/g), and flavonoid contents (TFC: 15.02 mg/g) were recorded in callus cultures placed under continuous white light (24 h), and of other light treatments. The highest antioxidant activity, i.e., ABTS (550.69 TEAC µM) and FRAP (365.37 TEAC µM), were also noted under white light (24 h). The analysis of phytochemicals confirmed the significant impact of white light exposures on the enhanced biosynthesis of plant secondary metabolites. The enhanced levels of secondary metabolites, i.e., kaempferol (1016.04 µg/g DW), neochlorogenic acid (998.38 µg/g DW), quercetin (959.92 µg/g DW), and minor compounds including luteolin, apigenin, and p-coumaric acid were observed as being highest in continuous white light (24 h with respect to the control (photoperiod). Similarly, blue light enhanced the chlorogenic acid accumulation. This study shows that differential spectral lights demonstrate a good approach for the enhancement of nutraceuticals along with novel pharmacologically important metabolites and antioxidants in the in vitro callus culture of M. oleifera.


Assuntos
Antioxidantes , Moringa oleifera , Antioxidantes/química , Luz , Flavonoides/análise , Suplementos Nutricionais/análise
20.
Polymers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850108

RESUMO

The foremost objective of this work is to assess the microcapsules composition (polymer-based and polymer/clay-based) effect, on the release of rosemary essential oil into w/o medium and evaluate their antioxidant activity. Calcium alginate (CA) and calcium alginate/montmorillonite hybrid (CA-MTN) microcapsules were developed following an ionotropic crosslinking gelation and were used as host materials for the encapsulation of rosemary essential oil. The unloaded/loaded CA and hybrid CA-MTN microcapsules were characterized by Fourier transform infra-red (FT-ATR) spectroscopy, thermal analysis (TGA), scanning electron microscopy (SEM) and DPPH assay. The evaluation of the microcapsule's physicochemical properties has shown that the clay filling with montmorillonite improved the microcapsule's properties. The encapsulation efficiency improved significantly in hybrid CA-MTN microcapsules and exhibited higher values ranging from 81 for CA to 83% for hybrid CA-MTN and a loading capacity of 71 for CA and 73% for hybrid CA-MTN, owing to the large adsorption capacity of the sodic clay. Moreover, the hybrid CA-MTN microcapsules showed a time-extended release of rosemary essential oil compared to CA microcapsules. Finally, the DPPH assay displayed a higher reduction of free radicals in hybrid CA-MNT-REO (12.8%) than CA-REO (10%) loaded microcapsules. These results proved that the clay-alginate combination provides microcapsules with enhanced properties compared to the polymer-based microcapsules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA