Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
Redox Biol ; 73: 103222, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843767

RESUMO

BACKGROUND: Cystathionine ß-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS: We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS: In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION: The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.


Assuntos
Cistationina beta-Sintase , Modelos Animais de Doenças , Homocistinúria , Fígado , Metabolômica , Camundongos Transgênicos , Proteômica , Esfingolipídeos , Animais , Camundongos , Homocistinúria/metabolismo , Homocistinúria/genética , Proteômica/métodos , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Fígado/metabolismo , Metabolômica/métodos , Esfingolipídeos/metabolismo , Mitocôndrias/metabolismo , Lipidômica/métodos , Proteoma/metabolismo
3.
Cell ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821050

RESUMO

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.

4.
J Neurol ; 271(6): 3439-3454, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520521

RESUMO

This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.


Assuntos
Biomarcadores , Ataxia de Friedreich , Ubiquinona , Humanos , Ataxia de Friedreich/diagnóstico , Masculino , Adulto , Biomarcadores/metabolismo , Feminino , Ubiquinona/análogos & derivados , Adulto Jovem , Pessoa de Meia-Idade , Citrato (si)-Sintase/metabolismo , Mitocôndrias/metabolismo , Adolescente , Estudos de Coortes
5.
Antioxidants (Basel) ; 12(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136223

RESUMO

Multiple system atrophy (MSA) is generally a sporadic neurodegenerative disease which ranks among atypical Parkinson's syndromes. The main clinical manifestation is a combination of autonomic dysfunction and parkinsonism and/or cerebellar disability. The disease may resemble other Parkinsonian syndromes, such as Parkinson's disease (PD) or progressive supranuclear palsy (PSP), from which MSA could be hardly distinguishable during the first years of progression. Due to the lack of a reliable and easily accessible biomarker, the diagnosis is still based primarily on the clinical picture. Recently, reduced levels of coenzyme Q10 (CoQ10) were described in MSA in various tissues, including the central nervous system. The aim of our study was to verify whether the level of CoQ10 in plasma and lymphocytes could serve as an easily available diagnostic biomarker of MSA. The study reported significantly lower levels of CoQ10 in the lymphocytes of patients with MSA compared to patients with PD and controls. The reduction in CoQ10 levels in lymphocytes correlated with the increasing degree of clinical involvement of patients with MSA. CoQ10 levels in lymphocytes seem to be a potential biomarker of disease progression.

6.
Stem Cell Res ; 71: 103194, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651831

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a mutation in the HTT gene. To generate human-induced pluripotent stem cells (hiPSCs), we used dermal fibroblasts from 1 healthy adult control (K-Pic2), 1 HD manifest patient (M-T2), 1 healthy juvenile control (jK-N1), and 1 juvenile HD patient (jHD-V1). HD stage of patients was assessed by neurological tests and donors were without comorbidities and were non-smokers. Characterization showed that the obtained hiPSCs have the same number of CAG repeats as the parental fibroblast lines, express pluripotency markers and have the ability to differentiate into all 3 germ layers.


Assuntos
Artrogripose , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Adulto , Doença de Huntington/genética , Fibroblastos
7.
Front Genet ; 14: 1182288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274791

RESUMO

Leber hereditary optic neuropathy is a primary mitochondrial disease characterized by acute visual loss due to the degeneration of retinal ganglion cells. In this study, we describe a patient carrying a rare missense heteroplasmic variant in MT-ND1, NC_012920.1:m.4135T>C (p.Tyr277His) manifesting with a typical bilateral painless decrease of the visual function, triggered by physical exercise or higher ambient temperature. Functional studies in muscle and fibroblasts show that amino acid substitution Tyr277 with His leads to only a negligibly decreased level of respiratory chain complex I (CI), but the formation of supercomplexes and the activity of the enzyme are disturbed noticeably. Our data indicate that although CI is successfully assembled in the patient's mitochondria, its function is hampered by the m.4135T>C variant, probably by stabilizing CI in its inactive form. We conclude that the m.4135T>C variant together with a combination of external factors is necessary to manifest the phenotype.

8.
Mol Genet Metab ; 139(3): 107610, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245379

RESUMO

PMM2-CDG is the most common defect among the congenital disorders of glycosylation. In order to investigate the effect of hypoglycosylation on important cellular pathways, we performed extensive biochemical studies on skin fibroblasts of PMM2-CDG patients. Among others, acylcarnitines, amino acids, lysosomal proteins, organic acids and lipids were measured, which all revealed significant abnormalities. There was an increased expression of acylcarnitines and amino acids associated with increased amounts of calnexin, calreticulin and protein-disulfid-isomerase in combination with intensified amounts of ubiquitinylated proteins. Lysosomal enzyme activities were widely decreased as well as citrate and pyruvate levels indicating mitochondrial dysfunction. Main lipid classes such as phosphatidylethanolamine, cholesterol or alkyl-phosphatidylcholine, as well as minor lipid species like hexosylceramide, lysophosphatidylcholines or phosphatidylglycerol, were abnormal. Biotinidase and catalase activities were severely reduced. In this study we discuss the impact of metabolite abnormalities on the phenotype of PMM2-CDG. In addition, based on our data we propose new and easy-to-implement therapeutic approaches for PMM2-CDG patients.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/terapia , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação , Fosfotransferases (Fosfomutases)/genética , Aminoácidos/metabolismo , Lipídeos
9.
Orphanet J Rare Dis ; 18(1): 92, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095554

RESUMO

BACKGROUND: Pathogenic variants in the ATAD3A gene lead to a heterogenous clinical picture and severity ranging from recessive neonatal-lethal pontocerebellar hypoplasia through milder dominant Harel-Yoon syndrome up to, again, neonatal-lethal but dominant cardiomyopathy. The genetic diagnostics of ATAD3A-related disorders is also challenging due to three paralogous genes in the ATAD3 locus, making it a difficult target for both sequencing and CNV analyses. RESULTS: Here we report four individuals from two families with compound heterozygous p.Leu77Val and exon 3-4 deletion in the ATAD3A gene. One of these patients was characterized as having combined OXPHOS deficiency based on decreased complex IV activities, decreased complex IV, I, and V holoenzyme content, as well as decreased levels of COX2 and ATP5A subunits and decreased rate of mitochondrial proteosynthesis. All four reported patients shared a strikingly similar clinical picture to a previously reported patient with the p.Leu77Val variant in combination with a null allele. They presented with a less severe course of the disease and a longer lifespan than in the case of biallelic loss-of-function variants. This consistency of the phenotype in otherwise clinically heterogenous disorder led us to the hypothesis that the severity of the phenotype could depend on the severity of variant impact. To follow this rationale, we reviewed the published cases and sorted the recessive variants according to their impact predicted by their type and the severity of the disease in the patients. CONCLUSION: The clinical picture and severity of ATAD3A-related disorders are homogenous in patients sharing the same combinations of variants. This knowledge enables deduction of variant impact severity based on known cases and allows more accurate prognosis estimation, as well as a better understanding of the ATAD3A function.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Variação Biológica da População , Mitocôndrias , ATPases Associadas a Diversas Atividades Celulares/genética , Mitocôndrias/genética , Fenótipo , Humanos
10.
J Inherit Metab Dis ; 46(2): 326-334, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719165

RESUMO

Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.


Assuntos
Defeitos Congênitos da Glicosilação , Doença de Niemann-Pick Tipo C , Oxisteróis , ATPases Vacuolares Próton-Translocadoras , Lactente , Criança , Humanos , Glicosilação , Ácidos e Sais Biliares , Hidrolases
11.
Stem Cell Res ; 64: 102931, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228511

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant heritability that affect the central nervous system and peripheral tissues. The human-induced pluripotent stem cells (hiPSC) lines were generated from dermal fibroblasts of patients without comorbidities, non-smokers, at the pre-manifest (IIMCBi004-A), early-manifest (IIMCBi005-A), and manifest (IIMCBi006-A) HD stage assessed by neurological tests, as well as from a healthy donor (IIMCBi003-A). Characterization showed that the obtained hiPSC lines contained different CAG repeats consistent with the number of CAG repeats in original fibroblasts. Moreover, hiPSCs expressed pluripotency markers and were able to differentiate into three-germ layers in vitro.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Huntington/genética
12.
Biomolecules ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291741

RESUMO

Purpose: Retinal ischemia (RI) and progressive neuronal death are sight-threatening conditions. Mitochondrial (mt) dysfunction and fusion/fission processes have been suggested to play a role in the pathophysiology of RI. This study focuses on changes in the mt parameters of the neuroretina, retinal pigment epithelium (RPE) and choroid in a porcine high intraocular pressure (IOP)-induced RI minipig model. Methods: In one eye, an acute IOP elevation was induced in minipigs and compared to the other control eye. Activity and amount of respiratory chain complexes (RCC) were analyzed by spectrophotometry and Western blot, respectively. The coenzyme Q10 (CoQ10) content was measured using HPLC, and the ultrastructure of the mt was studied via transmission electron microscopy. The expression of selected mt-pathway genes was determined by RT-PCR. Results: At a functional level, increased RCC I activity and decreased total CoQ10 content were found in RPE cells. At a protein level, CORE2, a subunit of RCC III, and DRP1, was significantly decreased in the neuroretina. Drp1 and Opa1, protein-encoding genes responsible for mt quality control, were decreased in most of the samples from the RPE and neuroretina. Conclusions: The eyes of the minipig can be considered a potential RI model to study mt dysfunction in this disease. Strategies targeting mt protection may provide a promising way to delay the acute damage and onset of RI.


Assuntos
Carcinoma de Células Renais , Glaucoma , Neoplasias Renais , Animais , Suínos , Pressão Intraocular , Porco Miniatura , Carcinoma de Células Renais/metabolismo , Glaucoma/metabolismo , Neoplasias Renais/metabolismo , Mitocôndrias/metabolismo , Isquemia/metabolismo
13.
Pharmaceutics ; 14(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015338

RESUMO

IL-6 signaling is involved in the pathogenesis of a number of serious diseases, including chronic inflammation and cancer. Targeting of IL-6 receptor (IL-6R) by small molecules is therefore an intensively studied strategy in cancer treatment. We describe the design, synthesis, and characteristics of two new bis-pentamethinium salts 5 and 6 (meta and para) bearing indole moieties. Molecular docking studies showed that both compounds have the potential to bind IL-6R (free energy of binding -9.5 and -8.1 kcal/mol). The interaction with IL-6R was confirmed using microscale thermophoresis analyses, which revealed that both compounds had strong affinity for the IL-6R (experimentally determined dissociation constants 26.5 ± 2.5 nM and 304 ± 27.6 nM, respectively). In addition, both compounds were cytotoxic for a broad spectrum of cancer cell lines in micromolar concentrations, most likely due to their accumulation in mitochondria and inhibition of mitochondrial respiration. In summary, the structure motif of bis-pentamethinium salts represents a promising starting point for the design of novel multitargeting compounds with the potential to inhibit IL-6 signaling and simultaneously target mitochondrial metabolism in cancer cells.

14.
Ultrastruct Pathol ; 46(5): 462-475, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35946926

RESUMO

Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Adulto , Fibroblastos/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia
15.
Genes (Basel) ; 13(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35886028

RESUMO

In this study, we report on a novel heteroplasmic pathogenic variant in mitochondrial DNA (mtDNA). The studied patient had myoclonus, epilepsy, muscle weakness, and hearing impairment and harbored a heteroplasmic m.8315A>C variant in the MTTK gene with a mutation load ranging from 71% to >96% in tested tissues. In muscle mitochondria, markedly decreased activities of respiratory chain complex I + III and complex IV were observed together with mildly reduced amounts of complex I and complex V (with the detection of V*- and free F1-subcomplexes) and a diminished level of complex IV holoenzyme. This pattern was previously seen in other MTTK pathogenic variants. The novel variant was not present in internal and publicly available control databases. Our report further expands the spectrum of MTTK variants associated with mitochondrial encephalopathies in adults.


Assuntos
Síndrome MERRF , Encefalomiopatias Mitocondriais , Adulto , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons , Humanos , Síndrome MERRF/genética , Síndrome MERRF/patologia , Mitocôndrias Musculares/metabolismo , Encefalomiopatias Mitocondriais/patologia
16.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628406

RESUMO

(1) Background: Huntington's disease (HD) is rare incurable hereditary neurodegenerative disorder caused by CAG repeat expansion in the gene coding for the protein huntingtin (HTT). Mutated huntingtin (mHTT) undergoes fragmentation and accumulation, affecting cellular functions and leading to neuronal cell death. Porcine models of HD are used in preclinical testing of currently emerging disease modifying therapies. Such therapies are aimed at reducing mHTT expression, postpone the disease onset, slow down the progression, and point out the need of biomarkers to monitor disease development and therapy efficacy. Recently, extracellular vesicles (EVs), particularly exosomes, gained attention as possible carriers of disease biomarkers. We aimed to characterize HTT and mHTT forms/fragments in blood plasma derived EVs in transgenic (TgHD) and knock-in (KI-HD) porcine models, as well as in HD patients' plasma. (2) Methods: Small EVs were isolated by ultracentrifugation and HTT forms were visualized by western blotting. (3) Results: The full length 360 kDa HTT co-isolated with EVs from both the pig model and HD patient plasma. In addition, a ~70 kDa mutant HTT fragment was specific for TgHD pigs. Elevated total huntingtin levels in EVs from plasma of HD groups compared to controls were observed in both pig models and HD patients, however only in TgHD were they significant (p = 0.02). (4) Conclusions: Our study represents a valuable initial step towards the characterization of EV content in the search for HD biomarkers.


Assuntos
Vesículas Extracelulares , Doença de Huntington , Animais , Biomarcadores , Vesículas Extracelulares/metabolismo , Humanos , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasma/metabolismo , Suínos
17.
PLoS One ; 17(3): e0264496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239701

RESUMO

Measurement of oxygen consumption of cultured cells is widely used for diagnosis of mitochondrial diseases, drug testing, biotechnology, and toxicology. Fibroblasts are cultured in monolayers, but physiological measurements are carried out in suspended or attached cells. We address the question whether respiration differs in attached versus suspended cells using multiwell respirometry (Agilent Seahorse XF24) and high-resolution respirometry (Oroboros O2k), respectively. Respiration of human dermal fibroblasts measured in culture medium was baseline-corrected for residual oxygen consumption and expressed as oxygen flow per cell. No differences were observed between attached and suspended cells in ROUTINE respiration of living cells and LEAK respiration obtained after inhibition of ATP synthase by oligomycin. The electron transfer capacity was higher in the O2k than in the XF24. This could be explained by a limitation to two uncoupler titrations in the XF24 which led to an underestimation compared to multiple titration steps in the O2k. A quantitative evaluation of respiration measured via different platforms revealed that short-term suspension of fibroblasts did not affect respiratory activity and coupling control. Evaluation of results obtained by different platforms provides a test for reproducibility beyond repeatability. Repeatability and reproducibility are required for building a validated respirometric database.


Assuntos
Respiração Celular , Fosforilação Oxidativa , Respiração Celular/fisiologia , Fibroblastos , Humanos , Consumo de Oxigênio/fisiologia , Reprodutibilidade dos Testes
19.
Brain ; 145(1): 208-223, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34382076

RESUMO

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Assuntos
Alquil e Aril Transferases , Mioclonia , Doenças Neurodegenerativas , Retinose Pigmentar , Criança , Dolicóis/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Retinose Pigmentar/genética
20.
Biology (Basel) ; 10(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066731

RESUMO

At the end of the mammalian intra-uterine foetal development, a rapid switch from glycolytic to oxidative metabolism must proceed. Using microarray techniques, qPCR, enzyme activities and coenzyme Q content measurements, we describe perinatal mitochondrial metabolism acceleration in rat liver and skeletal muscle during the perinatal period and correlate the results with those in humans. Out of 1546 mitochondrial genes, we found significant changes in expression in 1119 and 827 genes in rat liver and skeletal muscle, respectively. The most remarkable expression shift occurred in the rat liver at least two days before birth. Coenzyme Q-based evaluation in both the rat model and human tissues showed the same trend: the total CoQ content is low prenatally, significantly increasing after birth in both the liver and skeletal muscle. We propose that an important regulator of rat coenzyme Q biosynthesis might be COQ8A, an atypical kinase involved in the biosynthesis of coenzyme Q. Our microarray data, a total of 16,557 RefSeq (Entrez) genes, have been deposited in NCBI's Gene Expression Omnibus and are freely available to the broad scientific community. Our microarray data could serve as a suitable background for finding key factors regulating mitochondrial metabolism and the preparation of the foetus for the transition to extra-uterine conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA