Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med ; 12(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38137658

RESUMO

Neutrophil activation can release neutrophil extracellular traps (NETs) in acute inflammation. NETs result in the release of human neutrophil elastase (HNE) and calprotectin, where the former can degrade the latter and generate protein fragments associated with neutrophil activity. We investigated this in chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) using the novel neoepitope biomarker CPa9-HNE, quantifying a specific HNE-mediated fragment of calprotectin in serum. CPa9-HNE was compared to total calprotectin. Initially, CPa9-HNE was measured in healthy (n = 39), COPD (n = 67), and IPF (n = 16) serum using a neoepitope-specific competitive enzyme-linked immunosorbent assay. Then, a head-to-head comparison of CPa9-HNE and total calprotectin, a non-neoepitope, was conducted in healthy (n = 19), COPD (n = 25), and IPF (n = 19) participants. CPa9-HNE levels were significantly increased in COPD (p < 0.0001) and IPF subjects (p = 0.0001) when compared to healthy participants. Additionally, CPa9-HNE distinguished IPF (p < 0.0001) and COPD (p < 0.0001) from healthy participants more effectively than total calprotectin for IPF (p = 0.0051) and COPD (p = 0.0069). Here, CPa9-HNE also distinguished IPF from COPD (p = 0.045) participants, which was not observed for total calprotectin (p = 0.98). Neutrophil activity was significantly higher, as assessed via serum CPa9-HNE, for COPD and IPF compared to healthy participants. Additionally, CPa9-HNE exceeded the ability of non-neoepitope calprotectin serum measurements to separate healthy from lung disease and even COPD from IPF participants, indicating that neutrophil activity is essential for both COPD and IPF.

2.
Clin Biochem ; 118: 110599, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343745

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) remodeling, herein ECM degradation. Fibronectin (FN) is an important component of the ECM that is produced by multiple cell types, including fibroblasts. Extra domain B (EDB) is specific for a cellular FN isoform which is found in the ECM. We sought to develop a non-invasive test to investigate whether matrix metalloproteinase 8 (MMP-8) degradation of EDB in cellular FN results in a specific protein fragment that can be assessed serologically and if levels relate to pulmonary fibrosis. METHOD: Cellular FN was cleaved in vitro by MMP-8 and a protein fragment was identified by mass spectrometry. A monoclonal antibody (mAb) was generated, targeting a neo-epitope originating from EDB in cellular FN. Utilizing this mAb, a neo-epitope specific enzyme-linked immunosorbent assay (FN-EDB) was developed and technically validated. Serum FN-EDB was assessed in an IPF cohort (n = 98), registered at clinicaltrials.gov (NCT02818712), and in healthy controls (n = 35). RESULTS: The FN-EDB assay had high specificity for the MMP-8 degraded neo-epitope and was technically robust. FN-EDB serum levels were not influenced by age, sex, ethnicity, or BMI. Moreover, FN-EDB serum levels were significantly higher in IPF patients (median 31.38 [IQR 25.79-46.84] ng/mL) as compared to healthy controls (median 28.05 [IQR 21.58-33.88] ng/mL, p = 0.023). CONCLUSION: We developed the neo-epitope specific FN-EDB assay, a competitive ELISA, as a tool for serological assessment of MMP-8 mediated degradation of EDB in cellular FN. This study indicates that degradation of EDB in cellular FN is elevated in IPF and warrants further investigation.


Assuntos
Fibrose Pulmonar , Humanos , Metaloproteinase 8 da Matriz , Fibronectinas/química , Fibronectinas/metabolismo , Epitopos , Anticorpos Monoclonais , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA