Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Soft Matter ; 20(3): 495-510, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38088053

RESUMO

Jellyfish as a potential sustainable food material has recently gained increasing interest. However, with their soft gel-like texture and easy spoilage, it remains challenging to achieve desirable edible structures from jellyfish. The culinary preparation of jellyfish is a complex process and extends beyond conventional cooking methods. In this study, we investigate the transformation of jellyfish into crispy-like structures by manipulating their microstructural and mechanical properties through a solvent-based preparation. The study focuses on the use of "poor solvents", namely ethanol and acetone, and employs rheology measurements and quantitative microscopy techniques to analyze the effects of these solvents on the mechanical properties and microstructure of jellyfish. Our findings reveal that both ethanol and acetone lead to a significant increase in jellyfish hardness and deswelling. Notably, a micro-scale network is formed within the jellyfish matrix, and this network is then mechanically reinforced before a crispy-like texture can be obtained. Our study points to solvent polarity as also being a crucial factor for creating these effects and determines an upper polarity limit in the range of 12.2-12.9 MPa1/2 for added solvents, corresponding to approximately 60% of added ethanol or 70% of added acetone. Our study highlights that solvent-based preparation serves as a "reverse cooking" technique, where mechanical modification rather than traditional softening mechanisms are employed to stabilize and strengthen the microstructures and fibers of jellyfish. By elucidating the underlying mechanisms of solvent-induced stabilization, our findings may facilitate the development of innovative and sustainable culinary practices, paving the way for broader applications of jellyfish and other soft edible materials in the gastronomic landscape.


Assuntos
Acetona , Etanol , Solventes/química , Acetona/química , Etanol/química
2.
Biochim Biophys Acta ; 1848(12): 3175-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26417657

RESUMO

Giant unilamellar vesicles (GUVs) are simple model membrane systems of cell-size, which are instrumental to study the function of more complex biological membranes involving heterogeneities in lipid composition, shape, mechanical properties, and chemical properties. We have devised a method that makes it possible to prepare a uniform sample of ternary GUVs of a prescribed composition and heterogeneity by mixing different populations of small unilamellar vesicles (SUVs). The validity of the protocol has been demonstrated by applying it to ternary lipid mixture of DOPC, DPPC, and cholesterol by mixing small unilamellar vesicles (SUVs) of two different populations and with different lipid compositions. The compositional homogeneity among GUVs resulting from SUV mixing is quantified by measuring the area fraction of the liquid ordered-liquid disordered phases in giant vesicles and is found to be comparable to that in GUVs of the prescribed composition produced from hydration of dried lipids mixed in organic solvent. Our method opens up the possibility to quickly increase and manipulate the complexity of GUV membranes in a controlled manner at physiological buffer and temperature conditions. The new protocol will permit quantitative biophysical studies of a whole new class of well-defined model membrane systems of a complexity that resembles biological membranes with rafts.


Assuntos
Misturas Complexas , Lipídeos/química , Microscopia Confocal
3.
Langmuir ; 28(5): 2773-81, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22149538

RESUMO

Catansomes, which are vesicles prepared from mixtures of oppositely charged surfactants, have been suggested as effective alternatives to phospholipid vesicles, i.e., liposomes, in applications such as drug-delivery. This is mainly due to their enhanced chemical and physical stability as well as to their relatively easy preparation, which is an advantage for large-scale productions. In this study we have investigated catansomes prepared from a perfluorinated anionic surfactant (sodium perfluorooctanoate) premixed with a hydrogenated cationic surfactant (dodecyltrimethylammonium bromide or 1-dodecylpyridinium chloride). The aim was to gain insights into the physicochemical properties of these systems, such as size, stability, surface charge, and membrane morphology, which are essential for their use in drug-delivery applications. The catansomes were mostly unilamellar and 100-200 nm in size, and were stable for more than five months at room temperature. After loading the catansomes with the fluorescent marker calcein, they were found to exhibit an appreciable encapsulation efficiency and a low calcein leakage over time. The addition of fatty acids to calcein-loaded catansomes considerably promoted the release of calcein, and the rate and efficiency of calcein release were found to be proportional to the fatty acid concentration and chain length. Our results prove the feasibility of utilizing catansomes as drug-delivery vehicles as well as provide a means to efficiently release the encapsulated load.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Tensoativos/química , Portadores de Fármacos/síntese química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Tensoativos/síntese química
4.
Langmuir ; 24(14): 7278-84, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18553951

RESUMO

The interaction between a colloidal polystyrene particle mounted on an AFM cantilever and a hydrophilic and a hydrophobic surface in aqueous solution is investigated. Despite the apparent simplicity of these two types of systems a variety of different types of interactions are observed. The system containing the polystyrene particle and a hydrophilic surface shows DLVO-like interactions characteristic of forces between charged surfaces. However, when the surface is hydrophobized the interaction changes dramatically and shows evidence of a bridging air bubble being formed between the particle and the surface. For both sets of systems, plateaus of constant force in the force curves are obtained when the particle is retracted from the surface after being in contact. These events are interpreted as a number of individual polystyrene molecules that are bridging the polystyrene particle and the surface. The plateaus of constant force are expected for pulling a hydrophobic polymer in a bad (hydrophilic) solvent. The plateau heights are found to be of uniform spacing and independent of the type of surface, which suggests a model by which collapsed polymers are extended into the aqueous medium. This model is supported by a full stretching curve showing also the backbone elasticity and a stretching curve obtained in pentanol, where the plateau changes to a nonlinear force response, which is typical for a polymer in a good or neutral solvent. We suggest that these polymer bridges are important in particular for the interaction between polystyrene and the hydrophilic surface, where they to some extent counteract the long-range electrostatic repulsion.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Poliestirenos/química , Água/química , Soluções , Propriedades de Superfície
5.
ACS Nano ; 2(9): 1817-24, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19206420

RESUMO

An atomic force microscope and the colloidal probe technique are used to probe the interaction between a hydrophobic particle and a hydrophobic surface in water. The characteristics of the observed force curves strongly suggest that a gas bubble is formed when the particle is moved toward the surface and that the bubble ruptures when the particle subsequently is retracted from the surface. We demonstrate that this type of interaction is not unique for hydrophobic surfaces in water since the interaction between hydrophilic surfaces in air provides very similar force curves. However, the interaction between hydrophobic surfaces vanish if water is replaced by an organic solvent with low polarity. The bridging bubble model is employed to explain the hysteresis observed between approach and retraction force traces and experimental conditions where the hysteresis can be almost eliminated are identified. Finally, it is demonstrated that the hydrophobic interaction is strongly temperature dependent and this dependence can be attributed mainly to the decreasing solubility of air in water with increasing temperature.


Assuntos
Cristalização/métodos , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície , Tensão Superficial , Temperatura
6.
Biochemistry ; 46(43): 12231-7, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17915943

RESUMO

In order to investigate the dynamic strength of the interaction between lung surfactant protein D (SP-D) and different sugars, maltose, mannose, glucose, and galactose, we have used an atomic force microscope to monitor the interaction on a single molecule scale. The experiment is performed by measuring the rupture force when the SP-D-sugar bond is subjected to a continuously increasing force. Under these dynamic conditions, SP-D binds strongest to d-mannose and weakest to maltose and d-galactose. These results differ from equilibrium measurements wherein SP-D exhibits preference for maltose. On the basis of this finding, we propose that the binding of the disaccharide maltose to SP-D, which is energetically stronger than the binding of any of the monosacchrides, alters the structure of the binding site in a way that lowers the dynamic strength of the bond. We conclude that determining the strength of a protein-ligand bond under dynamic stress using an atomic force microscope is possibly more relevant for mimicking the actual nonequilibrium physiological situation in the lungs.


Assuntos
Carboidratos/química , Pulmão/química , Proteína D Associada a Surfactante Pulmonar/química , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Ensaio de Imunoadsorção Enzimática , Ligantes , Microscopia de Força Atômica , Ligação Proteica , Proteína D Associada a Surfactante Pulmonar/isolamento & purificação , Proteína D Associada a Surfactante Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA