Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328261

RESUMO

We assessed the correlation between liver fat percentage using dual-energy CT (DECT) and Hounsfield unit (HU) measurements in contrast and non-contrast CT. This study included 177 patients in two patient groups: Group A (n = 125) underwent whole body non-contrast DECT and group B (n = 52) had a multiphasic DECT including a conventional non-contrast CT. Three regions of interest were placed on each image series, one in the left liver lobe and two in the right to measure Hounsfield Units (HU) as well as liver fat percentage. Linear regression analysis was performed for each group as well as combined. Receiver operating characteristic (ROC) curve was generated to establish the optimal fat percentage threshold value in DECT for predicting a non-contrast threshold of 40 HU correlating to moderate-severe liver steatosis. We found a strong correlation between fat percentage found with DECT and HU measured in non-contrast CT in group A and B individually (R2 = 0.81 and 0.86, respectively) as well as combined (R2 = 0.85). No significant difference was found when comparing venous and arterial phase DECT fat percentage measurements in group B (p = 0.67). A threshold of 10% liver fat found with DECT had 95% sensitivity and 95% specificity for the prediction of a 40 HU threshold using non-contrast CT. In conclusion, liver fat quantification using DECT shows high correlation with HU measurements independent of scan phase.

3.
Nat Nanotechnol ; 10(9): 775-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214251

RESUMO

Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA