Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38955476

RESUMO

BACKGROUND: Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS: Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS: We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION: Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.

2.
Kidney Int Rep ; 9(7): 2209-2226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081747

RESUMO

Introduction: Monoallelic variants in the ALG5 gene encoding asparagine-linked glycosylation protein 5 homolog (ALG5) have been recently shown to disrupt polycystin-1 (PC1) maturation and trafficking via underglycosylation, causing an autosomal dominant polycystic kidney disease-like (ADPKD-like) phenotype and interstitial fibrosis. In this report, we present clinical, genetic, histopathologic, and protein structure and functional correlates of a new ALG5 variant, p.R79W, that we identified in 2 distant genetically related Irish families displaying an atypical late-onset ADPKD phenotype combined with tubulointerstitial damage. Methods: Whole exome and targeted sequencing were used for segregation analysis of available relatives. This was followed by immunohistochemistry examinations of kidney biopsies, and targeted (UMOD, MUC1) and untargeted plasma proteome and N-glycomic studies. Results: We identified a monoallelic ALG5 variant [GRCh37 (NM_013338.5): g.37569565G>A, c.235C>T; p.R79W] that cosegregates in 23 individuals, of whom 18 were clinically affected. We detected abnormal localization of ALG5 in the Golgi apparatus of renal tubular cells in patients' kidney specimens. Further, we detected the pathological accumulation of uromodulin, an N-glycosylated glycosylphosphatidylinositol (GPI)-anchored protein, in the endoplasmic reticulum (ER), but not mucin-1, an O- and N-glycosylated protein. Biochemical investigation revealed decreased plasma and urinary uromodulin levels in clinically affected individuals. Proteomic and glycoproteomic profiling revealed the dysregulation of chronic kidney disease (CKD)-associated proteins. Conclusion: ALG5 dysfunction adversely affects maturation and trafficking of N-glycosylated and GPI anchored protein uromodulin, leading to structural and functional changes in the kidney. Our findings confirm ALG5 as a cause of late-onset ADPKD and provide additional insight into the molecular mechanisms of ADPKD-ALG5.

3.
Redox Biol ; 73: 103222, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843767

RESUMO

BACKGROUND: Cystathionine ß-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS: We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS: In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION: The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.


Assuntos
Cistationina beta-Sintase , Modelos Animais de Doenças , Homocistinúria , Fígado , Metabolômica , Camundongos Transgênicos , Proteômica , Esfingolipídeos , Animais , Camundongos , Homocistinúria/metabolismo , Homocistinúria/genética , Proteômica/métodos , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Fígado/metabolismo , Metabolômica/métodos , Esfingolipídeos/metabolismo , Mitocôndrias/metabolismo , Lipidômica/métodos , Proteoma/metabolismo
5.
Cell ; 187(14): 3585-3601.e22, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821050

RESUMO

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.


Assuntos
Dolicóis , Dolicóis/metabolismo , Dolicóis/biossíntese , Humanos , Glicosilação , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Masculino , Mutação de Sentido Incorreto , Feminino
6.
J Neurol ; 271(6): 3439-3454, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520521

RESUMO

This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.


Assuntos
Biomarcadores , Ataxia de Friedreich , Ubiquinona , Humanos , Ataxia de Friedreich/diagnóstico , Masculino , Adulto , Biomarcadores/metabolismo , Feminino , Ubiquinona/análogos & derivados , Adulto Jovem , Pessoa de Meia-Idade , Citrato (si)-Sintase/metabolismo , Mitocôndrias/metabolismo , Adolescente , Estudos de Coortes
7.
Antioxidants (Basel) ; 12(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136223

RESUMO

Multiple system atrophy (MSA) is generally a sporadic neurodegenerative disease which ranks among atypical Parkinson's syndromes. The main clinical manifestation is a combination of autonomic dysfunction and parkinsonism and/or cerebellar disability. The disease may resemble other Parkinsonian syndromes, such as Parkinson's disease (PD) or progressive supranuclear palsy (PSP), from which MSA could be hardly distinguishable during the first years of progression. Due to the lack of a reliable and easily accessible biomarker, the diagnosis is still based primarily on the clinical picture. Recently, reduced levels of coenzyme Q10 (CoQ10) were described in MSA in various tissues, including the central nervous system. The aim of our study was to verify whether the level of CoQ10 in plasma and lymphocytes could serve as an easily available diagnostic biomarker of MSA. The study reported significantly lower levels of CoQ10 in the lymphocytes of patients with MSA compared to patients with PD and controls. The reduction in CoQ10 levels in lymphocytes correlated with the increasing degree of clinical involvement of patients with MSA. CoQ10 levels in lymphocytes seem to be a potential biomarker of disease progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA