Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769910

RESUMO

The current protocol presents the effects of the addition of Cu, rare earth Er, and Cu-Er composite elements on the microstructure of the Al-10Si-0.3Mg alloy. The variations in their low-temperature tensile properties were also investigated. The addition of rare earth Er elements, Cu elements, and Cu-Er composite elements increased the strength of all three groups of alloys when stretched at low temperatures (-60 °C). Further, the elongation of the alloy increased with the addition of Er, while the elongation of the other two groups decreased. The low-temperature (-60 °C) tensile strength of the alloy with the same composition was higher than that at room temperature (20 °C), but the elongation decreased. Notably, by adding rare earth Er to the Al-10Si-0.3Mg alloy, the three-dimensional morphology was changed from coarse dendritic to fine fibrous, the secondary dendritic arm spacing (SDAS) of the alloy was reduced, and the grains were refined. The Al2Cu phase, Al-Si-Cu-Mg quaternary phase, and Cu-rich phase appeared in the alloy with the addition of Cu elements, but the Si phase morphology and α-Al dendrites were not significantly improved. Interestingly, the Si phase morphology of the alloy was improved by adding Cu-Er composite elements, and SDAS was reduced. Still, the Al2Cu phase, Al-Si-Cu-Mg quaternary phase, and Cu-rich phase were not much improved.

2.
Materials (Basel) ; 14(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34772063

RESUMO

In order to investigate the effect of Mg2Si formation on the microstructure and properties of an Al-Si alloy, the critical point of a hypereutectic Al-17Si-4Cu-Mg alloy was calculated by Pandat software. The calculation results of the equilibrium phase diagram show that the critical point for Mg2Si phase formation for the alloy was obtained when the Mg content was 2.2%. The contents of 0.5 wt.% Mg and 2.5 wt.% Mg were selected as the research object. The content of Mg increased from 0.5 wt.% to 2.5 wt.%, the eutectic Si in the matrix was reduced, and the Chinese character-like Mg2Si phase appeared in the microstructure. In the peak ageing state, in addition to θ″ and Q' phases that were mainly precipitated, there was also needle-like ß″ precipitation in the 2.5 wt.% Mg content alloy. Larger precipitates were found in 2.5 wt.% content alloys, mainly due to the promotion of the solid solution having the aggregation and segregation of more solute elements in the matrix. The tensile strength, elongation, and hardness of hypereutectic Al-17Si-4Cu-0.5Mg alloy under peak ageing were 331 MPa, 3.11%, and 152.1 HB, respectively. The tensile strength and the elongation decreased while the hardness increased with the 2.5 wt.% Mg content, which is due to the formation of hard and brittle Mg2Si and Al8FeMg3Si, which has a splitting effect on the matrix.

3.
J Magn Reson ; 276: 51-59, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28110117

RESUMO

The modified CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence is a common sequence used for measuring the internal magnetic field gradient distribution of formation rocks, for which t0 (the duration of the first window) is a key acquisition parameter. In order to obtain the optimal t0, an adaptive method is proposed in this paper. By studying the factors influencing discriminant factor σ and its variation trend using T2-G forward numerical simulation, it is found that the optimal t0 corresponds to the maximum value of σ. Then combining the constraint condition of SNR (Signal Noise Ratio) of spin echo, an optimal t0 in modified CPMG pulse sequence is determined. This method can reduce the difficulties of operating T2-G experiments. Finally, the adaptive method is verified by the results of the T2-G experiments for four water-saturated sandstone samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA