Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-35266362

RESUMO

OBJECTIVE: To compare the effectiveness of loop-mediated isothermal amplification (LAMP) assay and microscopic examinations for detection of Schistosoma japonicum infections in Oncomelania hupensis in transmission-interrupted regions, so as to provide insights into the optimization of snail surveillance tools in these regions. METHODS: Four hilly schistosomiasis-endemic villages where transmission interruption was achieved were selected in Heqing County of Yunnan Province as the study villages, including Xinzhuang and Gule villages in hilly regions and Lianyi and Yitou villages in dam regions. Snail survey was performed by means of systematic sampling combined with environmental sampling in July 2018. All captured snails were identified for S. japonicum infections using microscopy. In addition, 10 to 20 snails were randomly sampled from each snail habitat following microscopy, numbered according to environments and subjected to LAMP assay. The positive rate of settings with S. japonicum-infected snails was compared among villages. RESULTS: A total of 7 949 living snails were captured from 83 snail habitats in 4 villages, and no S. japonicum infection was detected in snails. There were 226 mixed samples containing 1 786 snails subjected to LAMP assay, and positive LAMP assay was found in 3 mixed samples from 3 snail habitats in 2 dam villages. The positive rates of settings with S. japonicum-infected snails were comparable between Lianyi Village (one setting) and Yitou Village (2 set tings) (5.89% vs. 14.29%, P = 0.344). However, the overall positive rate of settings with S. japonicum-infected snails was significantly higher in dam villages (9.67%, 3/31) than in hilly villages (0) (P = 0.048). CONCLUSIONS: LAMP assay is more sensitive to detect S. japonicum infections in O. hupensis than conventional microcopy method, which may serve as a supplementary method for detection of S. japonicum infections in O. hupensis in high-risk snail habitats in hilly transmission-interrupted regions.


Assuntos
Schistosoma japonicum , Esquistossomose Japônica , Esquistossomose , Animais , China/epidemiologia , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Schistosoma japonicum/genética , Esquistossomose/prevenção & controle , Esquistossomose Japônica/epidemiologia
2.
Dev Biol ; 417(2): 168-81, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235816

RESUMO

Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.


Assuntos
Sistema Nervoso Entérico/embriologia , Trato Gastrointestinal/inervação , Mesoderma/embriologia , Crista Neural/embriologia , Animais , Comunicação Celular/fisiologia , Diferenciação Celular , Movimento Celular/fisiologia , Trato Gastrointestinal/embriologia , Humanos , Crista Neural/citologia , Neurônios/citologia , Transdução de Sinais/fisiologia
3.
Neurogastroenterol Motil ; 22(5): e127-37, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20082666

RESUMO

BACKGROUND: As they migrate through the developing gut, a sub-population of enteric neural crest-derived cells (ENCCs) begins to differentiate into neurons. The early appearance of neurons raises the possibility that electrical activity and neurotransmitter release could influence the migration or differentiation of ENNCs. METHODS: The appearance of neuronal sub-types in the gut of embryonic mice was examined using immunohistochemistry. The effects of blocking various forms of neural activity on ENCC migration and neuronal differentiation were examined using explants of cultured embryonic gut. KEY RESULTS: Nerve fibers were present in close apposition to many ENCCs. Commencing at E11.5, neuronal nitric oxide synthase (nNOS), calbindin and IK(Ca) channel immunoreactivities were shown by sub-populations of enteric neurons. In cultured explants of embryonic gut, tetrodotoxin (TTX, an inhibitor of action potential generation), nitro-L-arginine (NOLA, an inhibitor of nitric oxide synthesis) and clotrimazole (an IK(Ca) channel blocker) did not affect the rate of ENCC migration, but tetanus toxin (an inhibitor of SNARE-mediated vesicle fusion) significantly impaired ENCC migration as previously reported. In explants of E11.5 and E12.5 hindgut grown in the presence of TTX or tetanus toxin there was a decrease in the number nNOS+ neurons close to the migratory wavefront, but no significant difference in the proportion of all ENCC that expressed the pan-neuronal marker, Hu. CONCLUSIONS & INFERENCES: (i) Some enteric neuron sub-types are present very early during the development of the enteric nervous system. (ii) The rate of differentiation of some sub-types of enteric neurons appears to be influenced by TTX- and tetanus toxin-sensitive mechanisms.


Assuntos
Potenciais de Ação/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal/fisiologia , Neurônios/fisiologia , Animais , Calbindinas , Sistema Nervoso Entérico/embriologia , Trato Gastrointestinal/embriologia , Imuno-Histoquímica , Camundongos , Óxido Nítrico Sintase Tipo I/metabolismo , Técnicas de Cultura de Órgãos , Proteína G de Ligação ao Cálcio S100/metabolismo
4.
Dev Neurobiol ; 69(1): 22-35, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18985707

RESUMO

While they are migrating caudally along the developing gut, around 10%-20% of enteric neural crest-derived cells start to express pan-neuronal markers and tyrosine hydroxylase (TH). We used explants of gut from embryonic TH-green fluorescence protein (GFP) mice and time-lapse microscopy to examine whether these immature enteric neurons migrate and their mode of migration. In the gut of E10.5 and E11.5 TH-GFP mice, around 50% of immature enteric neurons (GFP(+) cells) migrated, with an average speed of around 15 mum/h. This is slower than the speed at which the population of enteric neural crest-derived cells advances along the developing gut, and hence neuronal differentiation seems to slow, but not necessarily halt, the caudal migration of enteric neural crest cells. Most migrating immature enteric neurons migrated caudally by extending a long-leading process followed by translocation of the cell body. This mode of migration is different from that of non-neuronal enteric neural crest-derived cells and neural crest cells in other locations, but resembles that of migrating neurons in many regions of the developing central nervous system (CNS). In migrating immature enteric neurons, a swelling often preceded the movement of the nucleus in the direction of the leading process. However, the centrosomal marker, pericentrin, was not localized to either the leading process or swelling. This seems to be the first detailed report of neuronal migration in the developing mammalian peripheral nervous system.


Assuntos
Movimento Celular/fisiologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Neurônios/fisiologia , Animais , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal/métodos , Proteínas de Neurofilamentos/metabolismo , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
5.
J Natl Cancer Inst ; 90(15): 1130-7, 1998 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-9701362

RESUMO

BACKGROUND: Lung cancer originates in a diffusely damaged bronchial epithelium as a result of sequential and cumulative genetic alterations. We investigated the feasibility of in vivo gene replacement in endobronchial precancerous and cancerous cells by a regionally administered nonviral delivery system. METHODS: After evaluating the in vitro transfection efficiency and cytotoxicity of a variety of cationic liposome-p53 formulations, a specific formulation, DP3-p53, was selected for further in vitro and in vivo evaluation. The ability of DP3-p53 to introduce the p53 gene in the normal bronchial epithelium was studied in transgenic mice that lack the p53 gene. The therapeutic effect of DP3-p53 administered intratracheally was studied in two nude mouse models of endobronchial human lung cancer by use of H358 (p53-null) and H322 (p53-mutant) cells. RESULTS: DP3-p53 was able to effectively introduce and express the p53 gene and induce G1 arrest and apoptosis in H358 cells in vitro and to introduce and transcribe the p53 gene in the bronchial epithelium of transgenic mice that lack the p53 gene in vivo. In therapeutic experiments using groups of four or five mice each, administration of five intratracheal doses of DP3-p53 (2 microg or 8 microg DNA per dose) on days 4, 8, 12, 16, and 20 after intratracheal tumor inoculation significantly inhibited lung tumor formation and prolonged by approximately twofold the survival of mice bearing H358 or H322 endobronchial tumor cells in contrast to the survival among untreated mice and mice treated with the DP3-empty vector (P = .007 [two-sided logrank test] for mice bearing H358 cells and P = .008 [two-sided logrank test] for those bearing H322 cells). CONCLUSIONS/IMPLICATIONS: Liposome-based p53 delivery through the airways is a potentially effective strategy for the treatment of early endobronchial cancer. These results have important implications for the gene therapy and prevention of human lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , DNA/administração & dosagem , Genes p53 , Terapia Genética/métodos , Neoplasias Pulmonares/terapia , Proteína Supressora de Tumor p53/fisiologia , Animais , Apoptose/fisiologia , Neoplasias Brônquicas/patologia , Neoplasias Brônquicas/terapia , Carcinoma Pulmonar de Células não Pequenas/genética , Cátions , Divisão Celular/fisiologia , DNA/genética , Epitélio/patologia , Epitélio/fisiologia , Humanos , Lipossomos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Transplante de Neoplasias , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/terapia , Transfecção , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
6.
Mol Cell Biol ; 11(12): 6067-74, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1944276

RESUMO

The wild-type p53 protein functions to suppress transformation, but numerous mutant p53 proteins are transformation competent. To examine the role of p53 as a transcription factor, we made fusion proteins containing human or mouse p53 sequences fused to the DNA binding domain of a known transcription factor, GAL4. Human and mouse wild-type p53/GAL4 specifically transactivated expression of a chloramphenicol acetyltransferase reporter in HeLa, CHO, and NIH 3T3 cells. Several mutant p53 proteins, including a mouse p53 mutant which is temperature sensitive for suppression, were also analyzed. A p53/GAL4 fusion protein with this mutation was also transcriptionally active only at the permissive temperature. Another mutant p53/GAL4 fusion protein analyzed mimics the mutation inherited in Li-Fraumeni patients. This fusion protein was as active as wild-type p53/GAL4 in our assay. Two human p53 mutants that arose from alterations of the p53 gene in colorectal carcinomas were 30- to 40-fold less effective at activating transcription than wild-type p53/GAL4 fusion proteins. Thus, functional wild-type p53/GAL4 fusion proteins activate transcription, while several transformation competent mutants do so poorly or not at all. Only one mutant p53/GAL4 fusion protein remained transcriptionally active.


Assuntos
Genes p53 , Mutação , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Animais , Clonagem Molecular , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Testes de Precipitina , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA