Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815683

RESUMO

Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.

2.
Cardiovasc Diabetol ; 23(1): 21, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195542

RESUMO

Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3ß, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1ß, IL-6, JAG2, KCNJ2, MALT1, ß-MHC, NF-κB, PCK1, PLCß1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Fatores de Ribosilação do ADP , Espessura Intima-Media Carotídea , Diacilglicerol O-Aciltransferase , MicroRNAs/genética , Pró-Proteína Convertase 9 , Proteína Smad7 , Aterosclerose/genética
3.
Nanoscale ; 14(46): 17277-17289, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377319

RESUMO

Silk sericin (SS) is a natural water-soluble protein with the potential to chelate metal ions via its polar groups. However, the difficulty of identifying the saturation of SS limits its application as filter films. One solution is to construct SS filter films with an indicator to reflect the degree of saturation of silk sericin. Hence, the nanocoating consisting of co-assembled SS protein and anthocyanin (C3G) nanoparticles is designed, constructed, and characterized to chelate metal ions with a saturation-visualization detection behavior. Here, metal ions Zn2+ and Al3+ are chosen as models to explore the chelating ability of SS and indicator behaviors of C3G, which could indicate the saturation degree of SS. Interestingly, after the saturation of SS in the solution and filter film situations, the visible color progressively shifts from pink to blue (Zn2+) or violet (Al3+), with the corresponding redshift of UV-Vis absorbance of C3G. Remarkable removal effectiveness of Zn2+ and Al3+, namely 93.16% and 53.97%, as well as an evident saturation-visualization detection, were identified by filter paper films with the nanocoating. Our research provides a fresh viewpoint for designing SS filter films that could effectively remove metal ions while enabling real-time viewing.


Assuntos
Nanopartículas , Sericinas , Seda , Antocianinas , Íons
4.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012300

RESUMO

Cell-penetrating peptides (CPPs) have been discovered to deliver chemical drugs, nucleic acids, and macromolecules to permeate cell membranes, creating a novel route for exogenous substances to enter cells. Up until now, various sequence structures and fundamental action mechanisms of CPPs have been established. Among them, arginine-rich peptides with unique cell penetration properties have attracted substantial scientific attention. Due to the positively charged essential amino acids of the arginine-rich peptides, they can interact with negatively charged drug molecules and cell membranes through non-covalent interaction, including electrostatic interactions. Significantly, the sequence design and the penetrating mechanisms are critical. In this brief synopsis, we summarize the transmembrane processes and mechanisms of arginine-rich peptides; and outline the relationship between the function of arginine-rich peptides and the number of arginine residues, arginine optical isomers, primary sequence, secondary and ternary structures, etc. Taking advantage of the penetration ability, biomedical applications of arginine-rich peptides have been refreshed, including drug/RNA delivery systems, biosensors, and blood-brain barrier (BBB) penetration. Understanding the membrane internalization mechanisms and design strategies of CPPs will expand their potential applications in clinical trials.


Assuntos
Peptídeos Penetradores de Células , Arginina/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos
5.
ACS Biomater Sci Eng ; 8(8): 3515-3525, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696669

RESUMO

As an emerging technology in precision medicine, the patient-derived organoid (PDO) technology has been indicated to provide novel modalities to judge the sensitivity of individual tumors to cancer drugs. In this work, an in vitro model of colorectal cancer (CRC) was established using the PDO culture, and it is demonstrated that the PDO samples preserved, to a great extent, the histologic features and marker expression of the original tumor tissues. Subsequently, cancer drugs 5-FU, oxaliplatin, and irinotecan were selected and screened on five CRC PDO samples, while the patient-derived organoid xenograft (PDOX) model was applied for comparison. The receiver operating characteristic (ROC) curve was drawn according to the IC50 data from the PDO model and the relative tumor proliferation rate (T/C%) from PDOX. Interestingly, the area under the ROC curve was 0.84 (95% CI, 0.64-1.04, P value = 0.028), which suggested that the IC50 of cancer drugs from the PDO model was strongly correlated with PDOX responses. In addition, the optimal sensitivity cutoff value for drug screening in CRC PDOs was identified at 10.35 µM, which could act as a reference value for efficacy evaluation of 5-FU, oxaliplatin, and irinotecan in the colorectal cancer drug screening. Since there are no unified criteria to judge the sensitivity of drugs in vitro, our work provides a method for establishing in vitro evaluation criteria via PDO and PDOX model using the patient tissues received from local hospitals, exhibiting potential in clinical cancer therapy and precision medicine.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Organoides/metabolismo , Organoides/patologia , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico
7.
J Mol Recognit ; 32(9): e2783, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31044464

RESUMO

The application of quantum dots (QDs) is restricted by the biosafety issue. QDs contribute to the adverse effects of organisms probably because of the ability to induce oxidative stress via changing the activity of antioxidant enzyme, for example, superoxide dismutase (SOD). But the underlying molecular mechanisms still remain unclear. This study investigated the harmful effects of oxidative stress induced by mercaptopropionic acid capped CdTe QDs (MPA-CdTe QDs) on the mouse primary nephrocytes as well as the structure and function of SOD molecule and explored the underlying molecular mechanism. After 24-hour MPA-CdTe QD exposure, the activation level of extracellular regulated protein kinase (ERK) signaling pathway and cysteinyl-directed aspartate-specific proteases (Caspases) significantly increased, which led to the increasing level of reactive oxygen species (ROS) and cell apoptosis; the group pretreated with ROS scavenger N-acetyl-L-cysteine (NAC) significantly reduced the apoptotic cell percentage, indicating that ROS played a critical role in QD-induced cytotoxicity. Further molecular experiments showed that the interacting processes between the MPA-CdTe QDs and SOD were spontaneous which changed the conformation, secondary structure of SOD. The interaction significantly resulted in the tightening of polypeptide chains and the shrinkage of SOD, leading to the inhibition of molecular SOD activity. This study demonstrates the adverse effects of QDs, revealing their potential risk in biomedical applications.


Assuntos
Ácido 3-Mercaptopropiônico/toxicidade , Compostos de Cádmio/toxicidade , Rim/patologia , Conformação Molecular , Estresse Oxidativo/efeitos dos fármacos , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Superóxido Dismutase/metabolismo , Telúrio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Calorimetria , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Malondialdeído/metabolismo , Camundongos , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Superóxido Dismutase/química , Termodinâmica
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 220: 117104, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31141778

RESUMO

Quantum dots (QDs) are a unique class of nano-materials that have attractive potentials in biological and biomedical applications, and the concern on their biosafety is concomitantly increasing. The overproduction of reactive oxygen species (ROS) is considered to be one of the reasons that induce the in vitro QDs induced toxic response. However, the exact molecular pathways underlying these effects remain poorly clarified and few studies combine the molecular results with the cellular results to explore the cytotoxic effect of QDs. The aim of the present study was to evaluate the effect of mercaptopropionic acid (MPA) capped CdTe QDs on the structures and functions of two antioxidant enzymes, catalase (CAT) superoxide dismutase (SOD), and then associated with the cytotoxic effects of oxidative stress induced by MPA-CdTe QDs on mouse hepatocytes to define the toxic underlying mechanism. The molecular experiment results showed that the exposure of QDs significantly changed the conformation of CAT and SOD, and leading to the promotion of molecular CAT activity and the inhibition of molecular SOD activity. Meanwhile, the cellular experiment results demonstrated that exposure to QDs changed the activities of CAT and SOD in mouse primary hepatocytes, led to the break of redox balance and resulted in the oxidative stress and cell apoptosis. This study explores the effects of MPA- CdTe QDs to the CAT and SOD molecules and then demonstrates the subsequent QDs toxic effects at a cellular level, revealing their potential risk in biomedical applications.


Assuntos
Compostos de Cádmio/toxicidade , Catalase/metabolismo , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pontos Quânticos , Superóxido Dismutase/metabolismo , Telúrio/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Catalase/química , Células Cultivadas , Dicroísmo Circular , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Conformação Proteica , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta , Compostos de Sulfidrila/química , Superóxido Dismutase/química
9.
J Biochem Mol Toxicol ; 31(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28613393

RESUMO

The mechanisms of the toxicity of Sudan dyes to the key antioxidant enzyme catalase (CAT) were investigated by spectroscopic methods, calorimetry techniques, enzyme activity assay, and molecular docking. Results showed that Sudan dyes bound to CAT through hydrophobic force, which changed the microenvironment of tryptophan and tyrosine residues, leading to a conformational alteration and shrinkage of the protein. Enzyme activity assay and molecular docking revealed that the activity of CAT was slightly inhibited in the presence of Sudan dyes. In comparison, the binding of Sudan II with CAT was slightly stronger than Sudan IV. Also, Sudan II and Sudan IV showed a different impact on the microenvironment of aromatic amino acid residues. But the dyes had very similar effects on conformation and activity of the protein. This work provides an essential reference for the evaluation of Sudan dyes' effects on body's antioxidant defense system and safe use of Sudan dyes.


Assuntos
Compostos Azo/química , Catalase/química , Simulação de Acoplamento Molecular , Animais , Compostos Azo/toxicidade , Catalase/antagonistas & inibidores , Bovinos , Interações Hidrofóbicas e Hidrofílicas
10.
Artigo em Inglês | MEDLINE | ID: mdl-25983061

RESUMO

As a major factor participating in the organism antioxidation and detoxification process, GSH is of vital importance to human beings. Detecting GSH content in single cells is significant to diagnosis and prevention of many diseases. In this work, the amount of GSH within single erythrocytes was detected and analyzed via statistical analysis. All erythrocytes tested were collected from people in different ages and people of different pathological states. The correlation between GSH level, age and pathological state were investigated. Results showed that the GSH level in erythrocytes decreased with the ages of patients increased. There was little difference between the GSH level in erythrocytes from people who had chronic diseases (hyperglycemia, hyperlipidemia and hypertension) and from healthy people. However, the GSH level in erythrocytes from people who had inflammation (myocarditis, nephritis and gastritis) was generally higher than that from the healthy people. This study provides basic data for researches of cell senescence and cytopathic effect and is helpful to diagnosis and prevention of diseases. In addition, it also provides a simple and effective method for rapid GSH detection within single cell.


Assuntos
Envelhecimento/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Glutationa/análise , Lasers , Microfluídica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Calibragem , Contagem de Células , Doença Crônica , Fluorescência , Humanos , Inflamação/patologia , Pessoa de Meia-Idade , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-24534424

RESUMO

A rapid and accurate detection of glutathione (GSH) content in single cells is important to the early diagnosis and prevention of diseases. A microfluidic system allows the manipulation of trace amounts of reagents and single cells in a simple and cheap glass chip coupled with laser induced fluorescence (LIF) detection. 2,3-Naphthalenedicarboxaldehyde (NDA) was used as the derivatization reagent to label GSH in cells. Microchannel surface derivatization and optimization of injection and separation were investigated in detail, and then the GSH in single mice hepatocyte was separated and detected under optimum conditions with a linear range of 5×10(-4) M~5×10(-3) M and a detection limit of 4.47×10(-5) M. This study provides a simple and effective method for rapid GSH detection in single cells using few reagents.


Assuntos
Glutationa/metabolismo , Hepatócitos/metabolismo , Lasers , Técnicas Analíticas Microfluídicas/métodos , Animais , Eletricidade , Fluorescência , Glutationa/química , Hepatócitos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naftalenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA