Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(38): e2303466120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695920

RESUMO

Low-grade wind with airspeed Vwind < 5 m/s, while distributed far more abundantly, is still challenging to extract because current turbine-based technologies require particular geography (e.g., wide-open land or off-shore regions) with year-round Vwind > 5 m/s to effectively rotate the blades. Here, we report that low-speed airflow can sensitively enable directional flow within nanowire-anchored ionic liquid (IL) drops. Specifically, wind-induced air/liquid friction continuously raises directional leeward fluid transport in the upper portion, whereas three-phase contact line (TCL) pinning blocks further movement of IL. To remove excessive accumulation of IL near TCL, fluid dives, and headwind flow forms in the lower portion, as confirmed by microscope observation. Such stratified circulating flow within single drop can generate voltage output up to ~0.84 V, which we further scale up to ~60 V using drop "wind farms". Our results demonstrate a technology to tap the widespread low-grade wind as a reliable energy resource.

2.
Nat Commun ; 13(1): 1291, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277510

RESUMO

Circadian humidity fluctuation is an important factor that affects human life all over the world. Here we show that spherical cap-shaped ionic liquid drops sitting on nanowire array are able to continuously output electricity when exposed to outdoor air, which we attribute to the daily humidity fluctuation induced directional capillary flow. Specifically, ionic liquid drops could absorb/desorb water around the liquid/vapor interface and swell/shrink depending on air humidity fluctuation. While pinning of the drop by nanowire array suppresses advancing/receding of triple-phase contact line. To maintain the surface tension-regulated spherical cap profile, inward/outward flow arises for removing excess fluid from the edge or filling the perimeter with fluid from center. This moisture absorption/desorption-caused capillary flow is confirmed by in-situ microscope imaging. We conduct further research to reveal how environmental humidity affects flow rate and power generation performance. To further illustrate feasibility of our strategy, we combine the generators to light up a red diode and LCD screen. All these results present the great potential of tiny humidity fluctuation as an easily accessible anytime-and-anywhere small-scale green energy resource.


Assuntos
Energia Renovável , Água , Eletricidade , Humanos , Umidade , Tensão Superficial
3.
Adv Mater ; 34(4): e2106410, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34715720

RESUMO

Humidity-based power generation that converts internal energy of water molecules into electricity is an emerging approach for harvesting clean energy from nature. Here it is proposed that intrinsic gradient within a humidity field near sweating surfaces, such as rivers, soil, or animal skin, is a promising power resource when integrated with liquid-infused nanofluidics. Specifically, capillary-stabilized ionic liquid (IL, Omim+ Cl- ) film is exposed to the above humidity field to create a sustained transmembrane water-content difference, which enables asymmetric ion-diffusion across the nanoconfined fluidics, facilitating long-term electricity generation with the power density of ≈12.11 µW cm-2 . This high record is attributed to the nanoconfined IL that integrates van der Waals and electrostatic interactions to block movement of Omim+ clusters while allowing for directional diffusion of moisture-liberated Cl+ . This humidity gradient triggers large ion-diffusion flux for power generation indicates great potential of sweating surfaces considering that most of the earth is covered by water or soil.

4.
Nat Commun ; 10(1): 3862, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455776

RESUMO

Current metal film-based electronics, while sensitive to external stretching, typically fail via uncontrolled cracking under a relatively small strain (~30%), which restricts their practical applications. To address this, here we report a design approach inspired by the stereocilia bundles of a cochlea that uses a hierarchical assembly of interfacial nanowires to retard penetrating cracking. This structured surface outperforms its flat counterparts in stretchability (130% versus 30% tolerable strain) and maintains high sensitivity (minimum detection of 0.005% strain) in response to external stimuli such as sounds and mechanical forces. The enlarged stretchability is attributed to the two-stage cracking process induced by the synergy of micro-voids and nano-voids. In-situ observation confirms that at low strains micro-voids between nanowire clusters guide the process of crack growth, whereas at large strains new cracks are randomly initiated from nano-voids among individual nanowires.

5.
Sci Adv ; 3(3): e1602188, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275735

RESUMO

Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA