Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Sci ; 13(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-38002484

RESUMO

The purpose of this study was to automatically classify different motor subtypes of Parkinson's disease (PD) on arterial spin labelling magnetic resonance imaging (ASL-MRI) data using support vector machine (SVM). This study included 38 subjects: 21 PD patients and 17 normal controls (NCs). Based on the Unified Parkinson's Disease Rating Scale (UPDRS) subscores, patients were divided into the tremor-dominant (TD) subtype and the postural instability gait difficulty (PIGD) subtype. The subjects were in a resting state during the acquisition of ASL-MRI data. The automated anatomical atlas 3 (AAL3) template was registered to obtain an ASL image of the same size and shape. We obtained the voxel values of 170 brain regions by considering the location coordinates of these regions and then normalized the data. The length of the feature vector depended on the number of voxel values in each brain region. Three binary classification models were utilized for classifying subjects' data, and we applied SVM to classify voxels in the brain regions. The left subgenual anterior cingulate cortex (ACC_sub_L) was clearly distinguished in both NCs and PD patients using SVM, and we obtained satisfactory diagnostic rates (accuracy = 92.31%, specificity = 96.97%, sensitivity = 84.21%, and AUCmax = 0.9585). For the right supramarginal gyrus (SupraMarginal_R), SVM distinguished the TD group from the other groups with satisfactory diagnostic rates (accuracy = 84.21%, sensitivity = 63.64%, specificity = 92.59%, and AUCmax = 0.9192). For the right intralaminar of thalamus (Thal_IL_R), SVM distinguished the PIGD group from the other groups with satisfactory diagnostic rates (accuracy = 89.47%, sensitivity = 70.00%, specificity = 6.43%, and AUCmax = 0.9464). These results are consistent with the changes in blood perfusion related to PD subtypes. In addition, the sensitive brain regions of the TD group and PIGD group involve the brain regions where the cerebellothalamocortical (CTC) and the striatal thalamocortical (STC) loops are located. Therefore, it is suggested that the blood perfusion patterns of the two loops may be different. These characteristic brain regions could become potential imaging markers of cerebral blood flow to distinguish TD from PIGD. Meanwhile, our findings provide an imaging basis for personalised treatment, thereby optimising clinical diagnostic and treatment approaches.

2.
Front Aging Neurosci ; 13: 765432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887745

RESUMO

Objective: To explore the relationship between white matter changes and olfactory ability among patients with mild cognitive impairment (MCI) and to develop a tool to predict the development of Alzheimer's disease among patients with MCI. Methods: The Montreal Cognitive Assessment (MoCA) was used for cognitive assessments, and the 70% isopropanol test paper was used to evaluate olfactory function. Tract-based spatial statistics, based on the diffusion tensor imaging technology, were used to obtain relevant parameters, and behavioral and imaging results were compared between patients with MCI (n = 36) and healthy older adults (n = 32). Results: The olfactory ability of MCI patients was lower overall, which was positively correlated with the MoCA score. Fractional anisotropy (FA) changes significantly of all parameters. Lower FA regions were mainly located in the corpus callosum, the orbitofrontal gyrus, and the left occipital lobe. The olfactory score was significantly correlated with the FA value of the orbitofrontal gyrus. Fibrous connections in several brain regions, such as the entorhinal cortex, were stronger in patients with MCI. Conclusion: The olfactory ability of MCI patients in our group was positively correlated with the neuropsychological scale results. Impairment in olfactory function was superior to memory deficits for predicting cognitive decline among cognitively intact participants. The fibrous connections in several brain regions, such as the entorhinal cortex, were higher in patients with MCI, which suggested that there may be a compensatory mechanism in the olfactory pathway in MCI patients. The decline in olfactory function may be a significant and useful indicator of neuropathological changes in MCI patients and an effective marker for the development of cognitive decline and dementia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA