Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(11): 5076-5082, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38447153

RESUMO

Herein, two Laves intermetallic series, ZrCo1.75M0.25 and NbCo1.75M0.25 (M = Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt), were synthesized, and their hydrogen evolution reaction (HER) activities were examined to reveal the influence of d electrons to the corresponding HER activities. Owing to the different electronegativity between Zr and Nb (χZr = 1.33; χNb = 1.60), Co and/or M elements receive more electrons in ZrCo1.75M0.25 than that of the Nb one. This leads to the overall weak H adsorption energy (ΔGHad) of ZrCo1.75M0.25 series compared to that of NbCo1.75M0.25 and rationalizes well the superior HER activity of the Rh member compared to that of the Pt one in the ZrCo1.75M0.25 series. Under industrial conditions (333 K, 6.0 M KOH), ZrCo1.75Rh0.25 only requires an overpotential of 110 mV to reach the current density of 500 mA/cm2 and can be operated at high current density over 400 h. This work demonstrates that with a proper combination between elements in intermetallic phases, one can manipulate d electrons of the active metal to be closer to the sweet spot (ΔGHad = 0). The Pt member may no longer exhibit the best HER activity in series, and all elements exhibit the potential to outperform the Pt member in the HER with careful control of the d electron population.

2.
Inorg Chem ; 62(47): 19230-19237, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37874974

RESUMO

Herein, we propose a simple yet effective method to deposit metal nanoparticles on Ti3C2Tx-MXene via direct electrosynthesis. Without using any reducing reagent or annealing under reducing atmosphere, it allows the conversion of metal salts (e.g., PtCl4, RuCl3·yH2O, IrCl3·zH2O, AgNO3, and CuCl2·2H2O) to metal nanoparticles with a small particle size (ca. 2 nm). Under these circumstances, it was realized that the support effect from Ti3C2Tx-MXene (electron pushing) is quite profound, in which the Ti3C2Tx-MXene support will act as an electron donor to push the electron to Pt nanoparticles and increase the electron density of Pt nanoparticles. It populates the antibonding state of Pt-Pt bonds as well as the adsorbate level that leads to a "weakening" of the ΔGH* in the optimal position. This rationalizes the outstanding activity of Pt/Ti3C2Tx-MXene (5 wt %, η10 = 16 mV) for the hydrogen evolution reaction (HER). In addition, this direct electrosynthesis method grants the growth of two or multiple types of metal nanoparticles on the Ti3C2Tx-MXene substrate that can perform dual or multiple functions as desired. For instance, one can prepare an electrocatalyst with Pt (2.5 wt %) and Ru nanoparticles (2.5 wt %) on the Ti3C2Tx-MXene support from the same synthetic method. This electrocatalyst (Pt_Ru/Ti3C2Tx-MXene) can display good electrocatalytic HER performance in both acid (0.5 M H2SO4) and alkaline electrolytes (1.0 M KOH).

3.
Chem Commun (Camb) ; 59(72): 10781-10784, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37593789

RESUMO

Multinary intermetallic compounds with rich chemical compositions enable one to achieve a logical design for desired materials based on the required function. In this work, we have demonstrated a step-by-step strategy to design a quaternary intermetallic compound that exhibits highly active and stable performance for the hydrogen evolution reaction (HER). With binary intermetallic TaCo2 as the starting point, the minor inclusion of a ductile Cu element in TaCo2 to form ternary TaCu0.25Co1.75 can substantially lower the degradation rate from ca. 20% to 5% after sintering treatment (i.e., enhance connectivity between particles). However, the overpotential at a current density of 10 mA cm-2 (η10) increases by ca. 20 mV from TaCo2 to TaCu0.25Co1.75. Further incorporation of a HER active Ru element to cast quaternary TaCu0.125Ru0.125Co1.75 can decrease ca. 70 mV of η10 while maintaining long-term stability. This proves that one can design functional intermetallic compounds intentionally, which may be extended to different fields of application.

4.
Inorg Chem ; 62(31): 12175-12180, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37490593

RESUMO

The higher population of the antibonding state around the Fermi level will result in better activity yet lower stability of HER (Re vs Ru metal). There seems to be a limitation or balance for using a single metal since the bonding scheme of a single metal is relatively simple. Combining Re (strong bonding), Ru (HER active), and Zr metal (corrosion-resistant) grants ternary intermetallic compound ZrRe1.75Ru025, exhibiting excellent HER activity and stability in acidic and alkaline electrolytes. The overpotential at a current density of 10 mA/cm2 (η10) for ZrRe1.75Ru025 is much lower compared to that of ZrRe2. Although the HER activity of ZrRe1.75Ru025 is not comparable to that of ZrRu2, it demonstrates outstanding HER stability, while the current density of ZrRu2 is over ca. 16% after 6 h. This suggests that intermetallic compounds can break the constraint between activity and stability in a single metal for HER, which may be applied in other fields as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA