Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Microbiol ; 14: 1252272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711694

RESUMO

Canine circovirus (CanineCV) is a virus associated with respiratory and digestive diseases in dogs and often occurs in coinfections with other pathogens, thereby aggravating the symptoms of infected dogs. CanineCV was first reported in the United States in 2012. Subsequently, it was reported among dogs in Europe, Asia, and South America. To investigate the prevalence of CanineCV in dogs in China, 331 dog samples were collected in this study. The PCR results showed that 9.06% (30/331, 95% CI = 6.2% ~ 12.7%) of the dog samples were CanineCV positive. CanineCV has also been detected in some carnivorous wild animals, indicating the potential risk of cross-species transmission of this virus. And, cats are also one of the most common pets in our daily lives, who is close contact with dogs. Thus, this study first investigated the prevalence of CanineCV in cats. The PCR results showed that 3.42% (14/409, 95% CI = 1.9% ~ 5.7%) of the cat samples were CanineCV positive. Moreover, 14 canine-derived CanineCV whole genomes and the first cat-derived CanineCV whole genome were obtained in this study. Rep and Cap are the major nonstructural proteins and structural proteins of CanineCV, respectively. In nucleic acid homology analyses, these 15 CanineCV strains showed a high degree of variation in Rep (85.9 ~ 99%) and Cap (85.6 ~ 100%). In phylogenetic analyses, the 15 CanineCV strains clustered into 3 different genotypes (genotypes 1, 3, and 4). Among them, the first cat-derived CanineCV belonged to CanineCV-3. In addition, 4 genetic recombination events were predicted in these 15 CanineCV strains, occurring in multiple regions of the genome. In conclusion, this study is the first to provide evidence of CanineCV infection in cats and successfully obtained the first whole genome of cat-derived CanineCV. The complex circulation and high prevalence of CanineCV among dogs and cats emphasize the importance of continuous monitoring of this virus in various animal species.

2.
Front Microbiol ; 13: 1064747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569076

RESUMO

Feline parvovirus often causes a fatal infectious disease and has a serious impact on domestic cats and wild felines. Feline chaphamaparvovirus (FeChPV) is a novel type of feline parvovirus that has been successively identified in Canada, Italy, and Turkey. The prevalence and pathogenicity of FeChPV in other regions is still unknown. In this study, we recorded the detection of FeChPV in a cat shelter in China. A high prevalence (81.08%, 30/37) of FeChPV was detected in cats with symptoms of upper respiratory tract disease (URTD) in this cat shelter. Multiple pathogen testing indicated high coinfection rates of 80% (24/30) with other common viruses in FeChPV-positive cats. Analyses of the necropsy and histopathological findings revealed severe lymphadenitis, encephalitis, and viral DNA in several tissues (including brain) of the deceased cat. Finally, we obtained nearly full-length genomes of four strains with 98.4%~98.6% homology with previously reported genomes. Notably, VP1 proteins showed seven unique amino acid mutations, while NS1 proteins carried eight mutations. In the evolutionary tree based on VP1 and NS1, the sequences clustered in a large branch with Italian and Canadian FeChPV strains. Given the possible association of FeChPV with URTD, further studies are necessary to evaluate the pathogenicity and epidemiological characteristics of this novel feline pathogen.

3.
BMC Vet Res ; 18(1): 440, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36522721

RESUMO

BACKGROUND: Interferon regulatory factor 1 (IRF1) is an important transcription factor that activates the type I interferon (IFN-I) response and plays a vital role in the antiviral immune response. Although IRF1 has been identified in several mammals, little information related to its function in canines has been described. RESULTS: In this study, canine IRF1 (CaIRF1) was cloned. After a series of bioinformatics analyses, we found that the CaIRF1 protein structure was similar to that of other animal IRF1 proteins, including a conserved DNA-binding domain (DBD), an IRF-association domain 2 (IAD2) domain and two nuclear localization signals (NLSs). An indirect immunofluorescence assay (IFA) revealed that CaIRF1 was mainly distributed in the nucleus. Overexpression of CaIRF1 in Madin-Darby canine kidney cells (MDCK) induced high levels of interferon ß (IFNß) and IFN-stimulated response element (ISRE) promoter activation and induced interferon-stimulated gene (ISG) expression. Subsequently, we assayed the antiviral activity of CaIRF1 against vesicular stomatitis virus (VSV) and canine parvovirus type-2 (CPV-2) in MDCK cells. Overexpression of CaIRF1 effectively inhibited the viral yields of VSV and CPV-2, while knocking down of CaIRF1 expression mildly increased viral gene copies. CONCLUSIONS: CaIRF1 is involved in the cellular IFN-I signaling pathway and plays an important role in the antiviral response.


Assuntos
Antivirais , Interferons , Animais , Cães , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Antivirais/farmacologia , Interferons/metabolismo , Interferon beta/genética , Regulação da Expressão Gênica , Mamíferos
4.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232841

RESUMO

Canine parvovirus (CPV-2) is one of the most important pathogens in dogs, and despite the continual development of vaccines against CPV-2, CPV-2 is still circulating in the canine population. The CPV-2a/2b/2c variant has replaced the original CPV-2 virus and seems to exhibit accelerated transmission. Although CPV-2 infection has been frequently reported, no studies have summarized information of CPV-2 variants currently circulating worldwide. To track the evolution of CPV-2, we downloaded and analyzed all VP2 sequences from the NCBI database (from 1978 to 2022). We found that CPV-2c shows a tendency to replace CPV-2a as the new dominant variant in Asia, South America, North America and Africa. Additionally, CPV-2c, which is prevalent in most regions of Asia, carries two special mutations in VP2, A5G and Q370R, and has become a dominant mutation with spillover already occurring. In conclusion, this summary of the types of global epidemic variants provides new insight into the evolution of CPV-2 and raises awareness for blocking the spread of this virus. The spread of Asian-derived CPV-2c urgently needs to be further under surveillance.


Assuntos
Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Animais , Proteínas do Capsídeo/genética , Doenças do Cão/epidemiologia , Cães , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Parvovirus Canino/genética , Filogenia
5.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742826

RESUMO

Canine circovirus (CanineCV) is an emerging virus in canines. Since the first strain of CanineCV was reported in 2012, CanineCV infection has shown a trend toward becoming a global epidemic. CanineCV infection often occurs with coinfection with other pathogens that may aggravate the symptoms of disease in affected dogs. Currently, CanineCV has not been successfully isolated by laboratories, resulting in a lack of clarity regarding its physicochemical properties, replication process, and pathogenic characteristics. To address this knowledge gap, the following results were obtained in this study. First, a CanineCV strain was rescued in F81 cells using infectious clone plasmids. Second, the Rep protein produced by the viral packaging rescue process was found to be associated with cytopathic effects. Additionally, the Rep protein and CanineCV inhibited the activation of the type I interferon (IFN-I) promoter, blocking subsequent expression of interferon-stimulated genes (ISGs). Furthermore, Rep was found to broadly inhibit host protein expression. We speculate that in CanineCV and canine parvovirus type 2 (CPV-2) coinfection cases, CanineCV promotes CPV-2 replication by inducing immunosuppression, which may increase the severity of clinical symptoms.


Assuntos
Infecções por Circoviridae , Circovirus , Coinfecção , Doenças do Cão , Interferon Tipo I , Infecções por Parvoviridae , Parvovirus Canino , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Circovirus/genética , Cães , Interferon Tipo I/genética , Parvovirus Canino/genética
6.
Vet Sci ; 10(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36669015

RESUMO

Respiratory tract and intestinal diseases are common threats to feline health. Coinfection with multiple pathogens is not rare among clinical infectious cases. Rapid diagnosis of these coinfections is of great significance for timely and effective clinical treatment. In this study, two novel multiplex polymerase chain reactions (mPCRs) were established for simultaneous detection of four pathogens associated with the feline intestinal tract (feline coronavirus (FCoV), feline astrovirus (FeAstV), feline panleukopenia virus (FPV) and feline kobuvirus (FeKoV)) and five pathogens associated with the respiratory tract (feline calicivirus (FCV), feline herpesvirus 1 (FHV-1), feline leukemia virus (FeLV), Chlamydia felis (C. felis) and influenza A virus (IAV)). The results of sensitivity analysis revealed that the detection limits for FeKoV, FPV, FeAstV, FCoV, IAV, C. felis, FeLV, FHV-1 and FCV were 103, 104, 103, 103, 103, 104, 104, 105 and 105 copies/µL, respectively. Moreover, the specificity of the two mPCRs was high. When the two mPCRs were applied to clinical samples, the assay worked well. In conclusion, we established two mPCR methods that provide an excellent tool for the diagnosis and monitoring of pathogens associated with the feline respiratory and intestinal tracts.

7.
Vet Sci ; 8(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34437470

RESUMO

Classical swine fever (CSF) is one of the most important viral diseases in swine, causing severe economic losses in the swine industry. In China, CSF is one of the key diseases that needs to be controlled; the government has implemented control measures, and vaccination with C-strain vaccines (C-vacs) has been compulsory since the 1950s. C-vacs do not allow the differentiation of field virus-infected and vaccinated animals (DIVA). In 2012, China proposed a goal of eradicating CSF. Additionally, a baculovirus-expressed E2 subunit vaccine (E2-vac) was licensed in 2018. However, the C-vac and E2-vac characteristics have not been compared. Here, we demonstrate that both the C-vac and E2-vac provide complete protection against CSF in pigs. The E2-vac allows DIVA, and the E2 antibody responses of stimulated pigs are developed earlier and are stronger than the C-vac antibody responses. Therefore, the E2-vac is a new candidate licensed vaccine to completely eradicate CSF on pig farms.

8.
Front Vet Sci ; 8: 694089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222407

RESUMO

Feline stool-associated circular DNA virus (FeSCV) is an unclassified circular replication-associated protein-encoding single-stranded (CRESS) DNA virus that was discovered in cats in Japan in 2018. Few studies on the genomic characteristics and prevalence of FeSCV have been conducted. To investigate whether FeSCV has been circulating in domestic cats in Guangdong, China, fecal samples were collected from cats with diarrhea in an animal hospital in 2018 to promote research on FeSCV. The FeSCV genome was obtained by PCR amplification and sequencing, and the detected virus was named PY4 (GenBank No. MT732515). The genome of PY4 was 2,034 nt in size, which was 12 nt smaller than the reported genome of Japanese FeSCV strains (KU7, KU8, KU9, KU14) (2,046 nt). The PY4 strain shared 95.1 ~ 95.5% homology with Japanese FeSCV strains. Notably, the Cap protein of PY4 was mutated at 15 amino acid sites, and the PY4 genome contained a unique open reading frame 3. In addition, there were two additional base insertions in the stem-loop structure of PY4, and the nucleotide homology of the spacer region was not high. A phylogenetic tree based on Rep proteins showed that PY4, Japanese FeSCVs and rodent stool-associated circular viruses (RodSCVs) clustered together, suggesting that they might share a similar origin in their phylogenetic evolution. In this study, samples collected in Guangzhou, China, in 2018 were subjected to an etiological investigation, and 20% (2/10) of the samples were positive for FeSCV. The ORFs, stem-loop structures, Cap proteins and intergenic region sequences of PY4 were significantly different from those reported in Japan. This is the first report of FeSCV in domestic cats with diarrhea in China, and further epidemiological studies are urgently needed to assess the impact of the virus on cats.

9.
PeerJ ; 8: e9869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062416

RESUMO

BACKGROUND: Canine parvovirus type 2 (CPV-2), a serious pathogen, leads to high morbidity and mortality in dogs and several wild carnivore species. Although it is a DNA virus, it evolves particularly rapidly, with a genomic substitution rate of approximately 10-4 substitutions/site/year, close to that of some RNA viruses. Tracing the prevalence of CPV-2 in dogs is significant. METHODS: In this study, an aetiological survey was carried out from 2016 to 2019 in Guangdong Province, China, involving Guangzhou, Shenzhen and Dongguan. Furthermore, to systematically analyse the prevalence of CPV-2 in China, the VP2 gene sequences of all Chinese isolates were downloaded from the NCBI nucleotide database in December 2019, and changes in CPV-2 variants were examined. RESULTS: A total of 55.7% (34/61) of samples were CPV-2 positive by PCR detection and virus isolation. In addition to different variants circulating in dogs, coinfection with multiple variants was identified, as was coinfection with other canine enteric pathogens in some cases. Two previously reported amino acid sites, A5G and Q370R of CPV-2c mutants, reported in variants in China were assessed, and several CPV-2 isolates with P13S and K582N mutations were detected in this study. Finally, we speculate on the prevalence of different CPV-2 variants in China. According to the VP2 gene sequence obtained from the NCBI nucleotide database, the proportion of different variants in China has changed, and CPV-2c appears to be growing rapidly. In conclusion, this aetiology survey suggests that CPV-2 continues to be common in China and that the prevalence of CPV-2c is increasing.

10.
PLoS One ; 14(7): e0217607, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31323023

RESUMO

Southern China is considered an important source of influenza virus pandemics because of the large, diverse viral reservoirs in poultry and swine. To examine the trend in influenza A virus of swine (IAV-S), an active surveillance program has been conducted from 2013 to 2015 in Guangdong, China. The phylogenetic analyses showed that the external genes of the isolates were assigned to the Eurasian avian-like swine (EA) H1N1 and/or human-like H3N2 lineages with multiple substitutions, indicating a notable genetic shift. Moreover, the internal genes derived from different origins (PB2, PB1, PA, NP: pdm/09 (pandemic influenza virus 2009)-origin, M: pdm/09- or EA-origin, NS: North American Triple Reassortant (TR)-origin have become the dominant backbone of IAV-S in southern China. According to the origins of the eight gene segments, the isolates can be categorized into five genotypes. The results of mice experiment showed that the YJ4 (genotype 1) and DG2 (genotype 4) are the most pathogenic to mice, and the viruses are observed in kidneys and brains, indicating the systemic infection. The alterations of the IAV-S gene composition supported the continued implementation of the intensive surveillance of IAV-S and the greater attention focused on potential shifts toward transmission to humans.


Assuntos
Evolução Molecular , Genótipo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/genética , Doenças dos Suínos/genética , Animais , China , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/veterinária , Suínos , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-30972307

RESUMO

This study aimed to detect changes in the complete transcriptome of MDCK cells after infection with the H5N1 and H3N2 canine influenza viruses using high-throughput sequencing, search for differentially expressed RNAs in the transcriptome of MDCK cells infected with H5N1 and H3N2 using comparative analysis, and explain the differences in the pathogenicity of H5N1 and H3N2 at the transcriptome level. Based on the results of our comparative analysis, significantly different levels of expression were found for 2,464 mRNAs, 16 miRNAs, 181 lncRNAs, and 262 circRNAs in the H3N2 infection group and 448 mRNAs, 12 miRNAs, 77 lncRNAs, and 189 circRNAs in the H5N1 infection group. Potential functions were predicted by performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the target genes of miRNAs, lncRNAs and circRNAs, and the ncRNA-mRNA regulatory network was constructed based on differentially expressed RNAs. A greater number of pathways regulating immune metabolism were altered in the H3N2 infection group than in the H5N1 infection group, which may be one reason why the H3N2 virus is less pathogenic than is the H5N1 virus. This study provides detailed data on the production of ncRNAs during infection of MDCK cells by the canine influenza viruses H3N2 and H5N1, analyzed differences in the total transcriptomes between H3N2- and H5N1-infected MDCK cells, and explained these differences with regard to the pathogenicity of H3N2 and H5N1 at the transcriptional level.


Assuntos
Perfilação da Expressão Gênica , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Células Madin Darby de Rim Canino/virologia , Animais , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular
12.
PLoS One ; 14(3): e0213295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30830947

RESUMO

Viral respiratory and intestinal infections are the most common causes of canine viral illness. Infection with multiple pathogens occurs in many cases. Rapid diagnosis of these multiple infections is important for providing timely and effective treatment. To improve diagnosis, in this study, two new multiplex polymerase chain reactions (mPCRs) were developed for simultaneous detection of canine respiratory viruses (CRV) and canine enteric viruses (CEV) using two separate primer mixes. The viruses included canine adenovirus type 2 (CAV-2), canine distemper virus (CDV), canine influenza virus (CIV), canine parainfluenza virus (CPIV), canine circovirus (CanineCV), canine coronavirus (CCoV) and canine parvovirus (CPV). The sensitivity of the mPCR results showed that the detection limit of both mPCR methods was 1×104 viral copies. Twenty nasal swabs (NS) and 20 anal swabs (AS) collected from dogs with symptoms of respiratory disease or enteric disease were evaluated using the novel mPCR methods as a clinical test. The mPCR protocols, when applied to these respiratory specimens and intestinal samples, could detect 7 viruses simultaneously, allowing rapid investigation of CRV (CAV-2, CDV, CIV and CPIV) and CEV (CAV-2, CanineCV, CCoV and CPV) status and prompt evaluation of coinfection. Our study provides an effective and accurate tool for rapid differential diagnosis and epidemiological surveillance in dogs.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus Canino/isolamento & purificação , Doenças do Cão/epidemiologia , Infecções por Enterovirus/veterinária , Enterovirus/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Transtornos Respiratórios/veterinária , Animais , Infecções por Coronavirus/virologia , Coronavirus Canino/classificação , Coronavirus Canino/genética , Doenças do Cão/virologia , Cães , Enterovirus/classificação , Enterovirus/genética , Infecções por Enterovirus/virologia , Transtornos Respiratórios/virologia
13.
Viruses ; 10(10)2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332780

RESUMO

Tetherin (BST2/CD317/HM1.24) has emerged as a key host-cell ·defence molecule that acts by inhibiting the release and spread of diverse enveloped virions from infected cells. We analysed the biological features of canine tetherin and found it to be an unstable hydrophilic type I transmembrane protein with one transmembrane domain, no signal peptide, and multiple glycosylation and phosphorylation sites. Furthermore, the tissue expression profile of canine tetherin revealed that it was particularly abundant in immune organs. The canine tetherin gene contains an interferon response element sequence that can be regulated and expressed by canine IFN-α. A CCK-8 assay showed that canine tetherin was effective in helping mitigate cellular damage caused by canine influenza virus (CIV) infection. Additionally, we found that the overexpression of canine tetherin inhibited replication of the CIV and that interference with the canine tetherin gene enhanced CIV replication in cells. The impact of canine tetherin on CIV replication was mild. However, these results elucidate the role of the innate immune factor, canine tetherin, during CIV infection for the first time.


Assuntos
Antígeno 2 do Estroma da Médula Óssea/imunologia , Doenças do Cão/imunologia , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/fisiologia , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Doenças do Cão/genética , Doenças do Cão/virologia , Cães , Interferon-alfa/genética , Interferon-alfa/imunologia , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Replicação Viral
14.
Vet Microbiol ; 220: 67-72, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29885803

RESUMO

Recently, canine influenza virus H3N2 (CIV H3N2) has circulated continuously in the dog populations of Asia and the United States (US). As humans have close contact with pet dogs, the circulation of CIV H3N2 is a cause for concern. Previous studies have reported that the E627K and D701N substitutions in the PB2 subunit enhanced viral pathogenicity to mammals in various influenza viruses. However, how the E627K and D701N substitutions in the PB2 subunit might affect the virulence of CIV H3N2 is unclear. Here, we constructed recombinant viruses by introducing E627K or D701N into the PB2 gene in the genetic background of A/Canine/Guangdong/02/2011H3N2 using a reverse-genetic system. The results showed that the E627K or D701N substitutions in the PB2 subunit of CIV H3N2 enhanced polymerase activity, but these substitutions did not impact viral pathogenicity in mice or beagles.


Assuntos
Substituição de Aminoácidos/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Infecções por Orthomyxoviridae/veterinária , Proteínas Virais/genética , Animais , Ásia/epidemiologia , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Cães , Células Madin Darby de Rim Canino , Camundongos , Infecções por Orthomyxoviridae/virologia , Genética Reversa/métodos , Estados Unidos/epidemiologia , Virulência
15.
Microb Pathog ; 121: 70-76, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29709688

RESUMO

Canine parvovirus (CPV) is a contagious disease in dogs that has high morbidity and mortality. In cases of infection, the pups tend to have a higher mortality and more severe clinical symptoms than the adult dogs because the dehydration is difficult for pups to bear. Following the natural infection, there is a rapid antibody response neutralizing the extracellular virus. As a result, virus titers in tissue and feces become markedly reduced. Hence, it is important to have an effective symptomatic therapy of supporting animals to survive in the early stages of CPV infection. Furthermore, the co-infection with bacteria could increase the severity of lesions and clinical signs as well. In this paper, we obtained the bacterial diversity in feces of CPV infected dogs with the enrichment of five bacteria genera (Shigella, Peptoclostridium, Peptostreptococcus, Streptococcus, Fusobacterium). These microorganisms may partly result in the intestinal pathology of the infection. In summary, the discussion of the bacterial biodiversity in feces of CPV infected dogs provides further insights into the pathology of CPV disease and the targets of developing more effective treatment strategies.


Assuntos
Doenças do Cão/virologia , Fezes/microbiologia , Microbioma Gastrointestinal , Infecções por Parvoviridae/veterinária , Parvovirus Canino/isolamento & purificação , Animais , Anticorpos Antivirais/sangue , Formação de Anticorpos , Antígenos Virais/análise , Bactérias/isolamento & purificação , Biodiversidade , Coinfecção/microbiologia , Coinfecção/veterinária , Coinfecção/virologia , Doenças do Cão/microbiologia , Cães/microbiologia , Cães/virologia , Análise de Sequência de DNA , Carga Viral
16.
Viruses ; 9(12)2017 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-29186842

RESUMO

MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.


Assuntos
Apoptose , Doenças do Cão/virologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Influenza Humana/virologia , MicroRNAs/genética , Infecções por Orthomyxoviridae/veterinária , Animais , Caspase 3/genética , Caspase 3/metabolismo , Contagem de Células , Cães , Regulação para Baixo , Genes Reporter , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Pulmão/virologia , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/virologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
17.
PLoS One ; 12(10): e0185698, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049413

RESUMO

Feline panleukopenia is a common contagious disease with high morbidity and mortality. At present, feline parvovirus (FPV) and canine parvovirus (CPV) variants are the pathogens of feline panleukopenia. Many studies have shown that miRNAs are involved in virus-host interactions. Nevertheless, miRNA expression profiling of FPV (original virus) or CPV-2b (new virus) in cats has not been reported. To investigate these profiles, three 10-week-old cats were orally inoculated with 106 TCID50 of the viruses (FPV and CPV-2b), and the jejunums of one cat in each group were sectioned for miRNA sequencing at 5 days post-inoculation (dpi). This study is the first attempt to use miRNA analysis to understand the molecular basis of FPV and CPV infection in cats. The miRNA expression profiles of the jejunums of cats infected with FPV and CPV were obtained, and a subset of miRNAs was validated by real-time qPCR. The results show that a variety of metabolism-related pathways, cytokine- and pathogen-host interaction-related pathways, and pathology- and cellar structure-related pathways, as well as others, were affected. Specifically, the JAK-STAT signaling pathway, which is critical for cytokines and growth factors, was enriched. This description of the miRNAs involved in regulating FPV and CPV infection in vivo provides further insight into the mechanisms of viral infection and adaptation and might provide an alternative antiviral strategy for disease control and prevention.


Assuntos
Doenças do Gato/genética , Doenças do Cão/genética , MicroRNAs/genética , Infecções por Parvoviridae/veterinária , Animais , Doenças do Gato/virologia , Gatos , Doenças do Cão/virologia , Cães , Infecções por Parvoviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA