Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Leukemia ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39277669

RESUMO

Acute erythroleukemia (AEL) is a rare subtype of acute myeloid leukemia with a poor prognosis. In this study, we established a novel murine AEL model with Trp53 depletion and ERG overexpression. ERG overexpression in Trp53-deficient mouse bone marrow cells, but not in wild-type bone marrow cells, leads to AEL development within two months after transplantation with 100% penetrance. The established mouse AEL cells expressing Cas9 can be cultured in vitro, induce AEL in vivo even in unirradiated recipient mice, and enable efficient gene ablation using the CRISPR/Cas9 system. We also confirmed the cooperation between ERG overexpression and TP53 inactivation in promoting the growth of immature erythroid cells in human cord blood cells. Mechanistically, ERG antagonizes KLF1 and inhibits erythroid maturation, whereas TP53 deficiency promotes proliferation of erythroid progenitors. Furthermore, we identified HDAC7 as a specific susceptibility in AEL by the DepMap-based two-group comparison analysis. HDAC7 promotes the growth of human and mouse AEL cells both in vitro and in vivo through its non-enzymatic functions. Our study provides experimental evidence that TP53 deficiency and ERG overexpression are necessary and sufficient for the development of AEL and highlights HDAC7 as a promising therapeutic target for this disease.

2.
FEBS J ; 290(21): 5141-5157, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37500075

RESUMO

Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica , Leucemia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA