Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genome Biol ; 22(1): 111, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863366

RESUMO

BACKGROUND: Oncopanel genomic testing, which identifies important somatic variants, is increasingly common in medical practice and especially in clinical trials. Currently, there is a paucity of reliable genomic reference samples having a suitably large number of pre-identified variants for properly assessing oncopanel assay analytical quality and performance. The FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and their pool, termed Sample A, to develop a reference sample with suitably large numbers of coding positions with known (variant) positives and negatives for properly evaluating oncopanel analytical performance. RESULTS: In reference Sample A, we identify more than 40,000 variants down to 1% allele frequency with more than 25,000 variants having less than 20% allele frequency with 1653 variants in COSMIC-related genes. This is 5-100× more than existing commercially available samples. We also identify an unprecedented number of negative positions in coding regions, allowing statistical rigor in assessing limit-of-detection, sensitivity, and precision. Over 300 loci are randomly selected and independently verified via droplet digital PCR with 100% concordance. Agilent normal reference Sample B can be admixed with Sample A to create new samples with a similar number of known variants at much lower allele frequency than what exists in Sample A natively, including known variants having allele frequency of 0.02%, a range suitable for assessing liquid biopsy panels. CONCLUSION: These new reference samples and their admixtures provide superior capability for performing oncopanel quality control, analytical accuracy, and validation for small to large oncopanels and liquid biopsy assays.


Assuntos
Alelos , Biomarcadores Tumorais , Frequência do Gene , Testes Genéticos/métodos , Variação Genética , Genômica/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Heterogeneidade Genética , Testes Genéticos/normas , Genômica/normas , Humanos , Neoplasias/diagnóstico , Fluxo de Trabalho
2.
Nat Biotechnol ; 39(9): 1115-1128, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33846644

RESUMO

Circulating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but the accuracy, sensitivity and reproducibility of ctDNA assays is poorly understood. Here we report the findings of a multi-site, cross-platform evaluation of the analytical performance of five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow with simulations, synthetic DNA spike-in experiments and proficiency testing on standardized, cell-line-derived reference samples. Above 0.5% variant allele frequency, ctDNA mutations were detected with high sensitivity, precision and reproducibility by all five assays, whereas, below this limit, detection became unreliable and varied widely between assays, especially when input material was limited. Missed mutations (false negatives) were more common than erroneous candidates (false positives), indicating that the reliable sampling of rare ctDNA fragments is the key challenge for ctDNA assays. This comprehensive evaluation of the analytical performance of ctDNA assays serves to inform best practice guidelines and provides a resource for precision oncology.


Assuntos
DNA Tumoral Circulante/genética , Oncologia , Neoplasias/genética , Medicina de Precisão , Análise de Sequência de DNA/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Limite de Detecção , Guias de Prática Clínica como Assunto , Reprodutibilidade dos Testes
3.
Hum Reprod ; 34(8): 1608-1619, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348829

RESUMO

STUDY QUESTION: Can reduced representation genome sequencing offer an alternative to single nucleotide polymorphism (SNP) arrays as a generic and genome-wide approach for comprehensive preimplantation genetic testing for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR) in human embryo biopsy samples? SUMMARY ANSWER: Reduced representation genome sequencing, with OnePGT, offers a generic, next-generation sequencing-based approach for automated haplotyping and copy-number assessment, both combined or independently, in human single blastomere and trophectoderm samples. WHAT IS KNOWN ALREADY: Genome-wide haplotyping strategies, such as karyomapping and haplarithmisis, have paved the way for comprehensive PGT, i.e. leveraging PGT-M, PGT-A and PGT-SR in a single workflow. These methods are based upon SNP array technology. STUDY DESIGN, SIZE, DURATION: This multi-centre verification study evaluated the concordance of PGT results for a total of 225 embryos, including 189 originally tested for a monogenic disorder and 36 tested for a translocation. Concordance for whole chromosome aneuploidies was also evaluated where whole genome copy-number reference data were available. Data analysts were kept blind to the results from the reference PGT method. PARTICIPANTS/MATERIALS, SETTING, METHODS: Leftover blastomere/trophectoderm whole genome amplified (WGA) material was used, or secondary trophectoderm biopsies were WGA. A reduced representation library from WGA DNA together with bulk DNA from phasing references was processed across two study sites with the Agilent OnePGT solution. Libraries were sequenced on an Illumina NextSeq500 system, and data were analysed with Agilent Alissa OnePGT software. The embedded PGT-M pipeline utilises the principles of haplarithmisis to deduce haplotype inheritance whereas both the PGT-A and PGT-SR pipelines are based upon read-count analysis in order to evaluate embryonic ploidy. Concordance analysis was performed for both analysis strategies against the reference PGT method. MAIN RESULTS AND THE ROLE OF CHANCE: PGT-M analysis was performed on 189 samples. For nine samples, the data quality was too poor to analyse further, and for 20 samples, no result could be obtained mainly due to biological limitations of the haplotyping approach, such as co-localisation of meiotic crossover events and nullisomy for the chromosome of interest. For the remaining 160 samples, 100% concordance was obtained between OnePGT and the reference PGT-M method. Equally for PGT-SR, 100% concordance for all 36 embryos tested was demonstrated. Moreover, with embryos originally analysed for PGT-M or PGT-SR for which genome-wide copy-number reference data were available, 100% concordance was shown for whole chromosome copy-number calls (PGT-A). LIMITATIONS, REASONS FOR CAUTION: Inherent to haplotyping methodologies, processing of additional family members is still required. Biological limitations caused inconclusive results in 10% of cases. WIDER IMPLICATIONS OF THE FINDINGS: Employment of OnePGT for PGT-M, PGT-SR, PGT-A or combined as comprehensive PGT offers a scalable platform, which is inherently generic and thereby, eliminates the need for family-specific design and optimisation. It can be considered as both an improvement and complement to the current methodologies for PGT. STUDY FUNDING/COMPETING INTEREST(S): Agilent Technologies, the KU Leuven (C1/018 to J.R.V. and T.V.) and the Horizon 2020 WIDENLIFE (692065 to J.R.V. and T.V). H.M. is supported by the Research Foundation Flanders (FWO, 11A7119N). M.Z.E, J.R.V. and T.V. are co-inventors on patent applications: ZL910050-PCT/EP2011/060211- WO/2011/157846 'Methods for haplotyping single cells' and ZL913096-PCT/EP2014/068315 'Haplotyping and copy-number typing using polymorphic variant allelic frequencies'. T.V. and J.R.V. are co-inventors on patent application: ZL912076-PCT/EP2013/070858 'High-throughput genotyping by sequencing'. Haplarithmisis ('Haplotyping and copy-number typing using polymorphic variant allelic frequencies') has been licensed to Agilent Technologies. The following patents are pending for OnePGT: US2016275239, AU2014345516, CA2928013, CN105874081, EP3066213 and WO2015067796. OnePGT is a registered trademark. D.L., J.T. and R.L.R. report personal fees during the conduct of the study and outside the submitted work from Agilent Technologies. S.H. and K.O.F. report personal fees and other during the conduct of the study and outside the submitted work from Agilent Technologies. J.A. reports personal fees and other during the conduct of the study from Agilent Technologies and personal fees from Agilent Technologies and UZ Leuven outside the submitted work. B.D. reports grants from IWT/VLAIO, personal fees during the conduct of the study from Agilent Technologies and personal fees and other outside the submitted work from Agilent Technologies. In addition, B.D. has a patent 20160275239 - Genetic Analysis Method pending. The remaining authors have no conflicts of interest.


Assuntos
Testes Genéticos/métodos , Haplótipos , Diagnóstico Pré-Implantação/métodos , Técnicas de Cultura Embrionária , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Gravidez
4.
Nat Genet ; 47(6): 598-606, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938943

RESUMO

Transcriptional control in large genomes often requires looping interactions between distal DNA elements, such as enhancers and target promoters. Current chromosome conformation capture techniques do not offer sufficiently high resolution to interrogate these regulatory interactions on a genomic scale. Here we use Capture Hi-C (CHi-C), an adapted genome conformation assay, to examine the long-range interactions of almost 22,000 promoters in 2 human blood cell types. We identify over 1.6 million shared and cell type-restricted interactions spanning hundreds of kilobases between promoters and distal loci. Transcriptionally active genes contact enhancer-like elements, whereas transcriptionally inactive genes interact with previously uncharacterized elements marked by repressive features that may act as long-range silencers. Finally, we show that interacting loci are enriched for disease-associated SNPs, suggesting how distal mutations may disrupt the regulation of relevant genes. This study provides new insights and accessible tools to dissect the regulatory interactions that underlie normal and aberrant gene regulation.


Assuntos
Regiões Promotoras Genéticas , Linhagem Celular , Mapeamento Cromossômico , Epistasia Genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único
5.
Am J Hum Genet ; 95(4): 445-53, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25262649

RESUMO

Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness.


Assuntos
Etnicidade/genética , Evolução Molecular , Exoma/genética , Variação Genética/genética , Perda Auditiva/genética , Perda Auditiva/patologia , Estudos de Casos e Controles , Conexina 26 , Conexinas , Frequência do Gene , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Filogenia
6.
J Med Genet ; 50(9): 627-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804846

RESUMO

BACKGROUND: Non-syndromic hearing loss (NSHL) is the most common sensory impairment in humans. Until recently its extreme genetic heterogeneity precluded comprehensive genetic testing. Using a platform that couples targeted genomic enrichment (TGE) and massively parallel sequencing (MPS) to sequence all exons of all genes implicated in NSHL, we tested 100 persons with presumed genetic NSHL and in so doing established sequencing requirements for maximum sensitivity and defined MPS quality score metrics that obviate Sanger validation of variants. METHODS: We examined DNA from 100 sequentially collected probands with presumed genetic NSHL without exclusions due to inheritance, previous genetic testing, or type of hearing loss. We performed TGE using post-capture multiplexing in variable pool sizes followed by Illumina sequencing. We developed a local Galaxy installation on a high performance computing cluster for bioinformatics analysis. RESULTS: To obtain maximum variant sensitivity with this platform 3.2-6.3 million total mapped sequencing reads per sample were required. Quality score analysis showed that Sanger validation was not required for 95% of variants. Our overall diagnostic rate was 42%, but this varied by clinical features from 0% for persons with asymmetric hearing loss to 56% for persons with bilateral autosomal recessive NSHL. CONCLUSIONS: These findings will direct the use of TGE and MPS strategies for genetic diagnosis for NSHL. Our diagnostic rate highlights the need for further research on genetic deafness focused on novel gene identification and an improved understanding of the role of non-exonic mutations. The unsolved families we have identified provide a valuable resource to address these areas.


Assuntos
Surdez/genética , Testes Genéticos/métodos , Genômica/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA
7.
BMC Genomics ; 13: 618, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23148716

RESUMO

BACKGROUND: Targeted genomic enrichment (TGE) is a widely used method for isolating and enriching specific genomic regions prior to massively parallel sequencing. To make effective use of sequencer output, barcoding and sample pooling (multiplexing) after TGE and prior to sequencing (post-capture multiplexing) has become routine. While previous reports have indicated that multiplexing prior to capture (pre-capture multiplexing) is feasible, no thorough examination of the effect of this method has been completed on a large number of samples. Here we compare standard post-capture TGE to two levels of pre-capture multiplexing: 12 or 16 samples per pool. We evaluated these methods using standard TGE metrics and determined the ability to identify several classes of genetic mutations in three sets of 96 samples, including 48 controls. Our overall goal was to maximize cost reduction and minimize experimental time while maintaining a high percentage of reads on target and a high depth of coverage at thresholds required for variant detection. RESULTS: We adapted the standard post-capture TGE method for pre-capture TGE with several protocol modifications, including redesign of blocking oligonucleotides and optimization of enzymatic and amplification steps. Pre-capture multiplexing reduced costs for TGE by at least 38% and significantly reduced hands-on time during the TGE protocol. We found that pre-capture multiplexing reduced capture efficiency by 23 or 31% for pre-capture pools of 12 and 16, respectively. However efficiency losses at this step can be compensated by reducing the number of simultaneously sequenced samples. Pre-capture multiplexing and post-capture TGE performed similarly with respect to variant detection of positive control mutations. In addition, we detected no instances of sample switching due to aberrant barcode identification. CONCLUSIONS: Pre-capture multiplexing improves efficiency of TGE experiments with respect to hands-on time and reagent use compared to standard post-capture TGE. A decrease in capture efficiency is observed when using pre-capture multiplexing; however, it does not negatively impact variant detection and can be accommodated by the experimental design.


Assuntos
Genoma Humano , Genômica , Perda Auditiva/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Estudos de Casos e Controles , Análise Custo-Benefício , Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/genética , Análise de Sequência de DNA/economia
8.
J Vis Exp ; (38)2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20428089

RESUMO

We have developed a fast, simple, and accurate DNA-based screening method to identify the fish species present in fresh and processed seafood samples. This versatile method employs PCR amplification of genomic DNA extracted from fish samples, followed by restriction fragment length polymorphism (RFLP) analysis to generate fragment patterns that can be resolved on the Agilent 2100 Bioanalyzer and matched to the correct species using RFLP pattern matching software. The fish identification method uses a simple, reliable, spin column- based protocol to isolate DNA from fish samples. The samples are treated with proteinase K to release the nucleic acids into solution. DNA is then isolated by suspending the sample in binding buffer and loading onto a micro- spin cup containing a silica- based fiber matrix. The nucleic acids in the sample bind to the fiber matrix. The immobilized nucleic acids are washed to remove contaminants, and total DNA is recovered in a final volume of 100 mul. The isolated DNA is ready for PCR amplification with the provided primers that bind to sequences found in all fish genomes. The PCR products are then digested with three different restriction enzymes and resolved on the Agilent 2100 Bioanalyzer. The fragment lengths produced in the digestion reactions can be used to determine the species of fish from which the DNA sample was prepared, using the RFLP pattern matching software containing a database of experimentally- derived RFLP patterns from commercially relevant fish species.


Assuntos
DNA/análise , DNA/genética , Peixes/classificação , Peixes/genética , Reação em Cadeia da Polimerase/métodos , Alimentos Marinhos/classificação , Animais , DNA/isolamento & purificação , Polimorfismo de Fragmento de Restrição
9.
Methods ; 50(4): S15-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20215015

RESUMO

The next-generation DNA sequencing workflows require an accurate quantification of the DNA molecules to be sequenced which assures optimal performance of the instrument. Here, we demonstrate the use of qPCR for quantification of DNA libraries used in next-generation sequencing. In addition, we find that qPCR quantification may allow improvements to current NGS workflows, including reducing the amount of library DNA required, increasing the accuracy in quantifying amplifiable DNA, and avoiding amplification bias by reducing or eliminating the need to amplify DNA before sequencing.


Assuntos
Biblioteca Gênica , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Hibridização de Ácido Nucleico , Sensibilidade e Especificidade
10.
Genome Biol ; 10(10): R116, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19835619

RESUMO

To exploit fully the potential of current sequencing technologies for population-based studies, one must enrich for loci from the human genome. Here we evaluate the hybridization-based approach by using oligonucleotide capture probes in solution to enrich for approximately 3.9 Mb of sequence target. We demonstrate that the tiling probe frequency is important for generating sequence data with high uniform coverage of targets. We obtained 93% sensitivity to detect SNPs, with a calling accuracy greater than 99%.


Assuntos
Genoma Humano/genética , Hibridização de Ácido Nucleico/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Linhagem Celular , Sondas de DNA/metabolismo , Éxons/genética , Biblioteca Gênica , Genótipo , Humanos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Soluções
11.
J Immunol Methods ; 276(1-2): 185-96, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12738372

RESUMO

Brucella melitensis is a highly infectious animal pathogen able to cause a recurring debilitating disease in humans and is therefore high on the list of biological warfare agents. Immunoglobulin genes from mice immunized with gamma-irradiated B. melitensis strain 16M were used to construct a library that was screened by phage display against similarly prepared bacteria. The selected phage particles afforded a strong enzyme-linked immunosorbent assay (ELISA) signal against gamma-irradiated B. melitensis cells. However, extensive efforts to express the respective single chain antibody variable region fragment (scFv) in soluble form failed due to: (i) poor solubility and (ii) in vivo degradation of the c-myc tag used for the detection of the recombinant antibodies. Both problems could be addressed by: (i) fusing a human kappa light chain constant domain (Ck) chain to the scFv to generate single chain antibody fragment (scAb) antibody fragments and (ii) by co-expression of the periplasmic chaperone Skp. While soluble, functional antibodies could be produced in this manner, phage-displaying scFvs or scAbs were still found to be superior ELISA reagents for immunoassays, due to the large signal amplification afforded by anti-phage antibodies. The isolated phage antibodies were shown to be highly specific to B. melitensis and did not recognize Yersinia pseudotuberculosis in contrast to the existing diagnostic monoclonal YST 9.2.1.


Assuntos
Anticorpos Antibacterianos/genética , Brucella melitensis/imunologia , Região Variável de Imunoglobulina/genética , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/metabolismo , Especificidade de Anticorpos , Guerra Biológica , Brucella melitensis/patogenicidade , Cromatografia Líquida , Feminino , Expressão Gênica , Genes de Imunoglobulinas , Regiões Constantes de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Biblioteca de Peptídeos , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA