Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 37(3): 250-263, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416124

RESUMO

Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Ustilaginales , Ustilago , Virulência/genética , Ustilago/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Zea mays/microbiologia
2.
Bio Protoc ; 13(13): e4709, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37449040

RESUMO

The easyPACId (easy Promoter Activation and Compound Identification) approach is focused on the targeted activation of natural product biosynthetic gene clusters (BGCs) encoding non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), NRPS-PKS hybrids, or other BGC classes. It was applied to entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus by exchanging the natural promoter of desired BGCs against the L-arabinose inducible PBAD promoter in ∆hfq mutants of the respective strains. The crude (culture) extracts of the cultivated easyPACId mutants are enriched with the single compound or compound class and can be tested directly against various target organisms without further purification of the produced natural products. Furthermore, isolation and identification of compounds from these mutants is simplified due to the reduced background in the ∆hfq strains. The approach avoids problems often encountered in heterologous expression hosts, chemical synthesis, or tedious extraction of desired compounds from wild-type crude extracts. This protocol describes easyPACId for Xenorhabdus and Photorhabdus, but it was also successfully adapted to Pseudomonas entomophila and might be suitable for other proteobacteria that carry hfq.

3.
Genes (Basel) ; 12(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208898

RESUMO

In host-pathogen interactions RNA interference (RNAi) has emerged as a pivotal mechanism to modify both, the immune responses of the host as well as the pathogenicity and virulence of the pathogen. In addition, in some fungi RNAi is also known to affect chromosome biology via its effect on chromatin conformation. Previous studies reported no effect of the RNAi machinery on the virulence of the fungal plant pathogen Zymoseptoria tritici however the role of RNAi is still poorly understood in this species. Herein, we elucidate whether the RNAi machinery is conserved within the genus Zymoseptoria. Moreover, we conduct functional analyses of Argonaute and Dicer-like proteins and test if the RNAi machinery affects chromosome stability. We show that the RNAi machinery is conserved among closely related Zymoseptoria species while an exceptional pattern of allelic diversity was possibly caused by introgression. The deletion of Ago1 reduced the ability of the fungus to produce asexual propagules in planta in a quantitative matter. Chromosome stability of the accessory chromosome of Z. tritici was not prominently affected by the RNAi machinery. These results indicate, in contrast to previous finding, a role of the RNAi pathway during host infection, but not in the stability of accessory chromosomes in Z. tritici.


Assuntos
Proteínas Argonautas/metabolismo , Ascomicetos/fisiologia , Instabilidade Cromossômica , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Triticum/microbiologia , Virulência , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Interferência de RNA , Triticum/genética , Triticum/metabolismo
4.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653886

RESUMO

The biotrophic fungus Ustilago maydis harbors a chitin deacetylase (CDA) family of six active genes as well as one pseudogene which are differentially expressed during colonization. This includes one secreted soluble CDA (Cda4) and five putatively glycosylphosphatidylinositol (GPI)-anchored CDAs, of which Cda7 belongs to a new class of fungal CDAs. Here, we provide a comprehensive functional study of the entire family. While budding cells of U. maydis showed a discrete pattern of chitosan staining, biotrophic hyphae appeared surrounded by a chitosan layer. We purified all six active CDAs and show their activity on different chitin substrates. Single as well as multiple cda mutants were generated and revealed a virulence defect for mutants lacking cda7 We implicated cda4 in production of the chitosan layer surrounding biotrophic hyphae and demonstrated that the loss of this layer does not reduce virulence. By combining different cda mutations, we detected redundancy as well as specific functions for certain CDAs. Specifically, certain combinations of mutations significantly affected virulence concomitantly with reduced adherence, appressorium formation, penetration, and activation of plant defenses. Attempts to inactivate all seven cda genes simultaneously were unsuccessful, and induced depletion of cda2 in a background lacking the other six cda genes illustrated an essential role of chitosan for cell wall integrity.IMPORTANCE The basidiomycete Ustilago maydis causes smut disease in maize, causing substantial losses in world corn production. This nonobligate pathogen penetrates the plant cell wall with the help of appressoria and then establishes an extensive biotrophic interaction, where the hyphae are tightly encased by the plant plasma membrane. For successful invasion and development in plant tissue, recognition of conserved fungal cell wall components such as chitin by the plant immune system needs to be avoided or suppressed. One strategy to achieve this lies in the modification of chitin to chitosan by chitin deacetylases (CDAs). U. maydis has seven cda genes. This study reveals discrete as well as redundant contributions of these genes to virulence as well as to cell wall integrity. Unexpectedly, the inactivation of all seven genes is not tolerated, revealing an essential role of chitosan for viability.


Assuntos
Amidoidrolases/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Quitina/metabolismo , Quitosana/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Virulência/genética , Amidoidrolases/classificação , Amidoidrolases/metabolismo , Basidiomycota/enzimologia , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Virulência , Zea mays/microbiologia
5.
New Phytol ; 231(1): 399-415, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33786841

RESUMO

Ustilago maydis is a biotrophic fungus causing smut disease in corn. The infectious forms are dikaryotic hyphae. Here we analyze mutants lacking the nlt1 transcription factor and investigate why these mutants are unable to induce leaf tumors. The study involved reverse genetics, complementation, epistasis analysis, microscopy, gene expression analysis by quantitative reverse transcriptase PCR and virulence assays. We show that nlt1 mutants colonize maize leaves efficiently but fail to undergo karyogamy and are attenuated in late proliferation. Nlt1 activates transcription of ros1, a transcription factor controlling karyogamy, and represses see1, an effector previously shown to contribute to leaf tumor induction. In mononuclate solopathogenic strains, nlt1 mutants cause attenuated leaf tumor formation. In actively dividing maize organs, nlt1 mutants undergo karyogamy and induce tumor formation. Sporisorium reilianum, a smut fungus unable to induce leaf tumors, possesses an ortholog of nlt1 that controls the fusion of dikaryotic nuclei late in infection during cob colonization. Our results have established a regulatory connection between nlt1, ros1 and see1 and suggest the existence of two stages contributing to leaf tumor formation, one before nuclear fusion and involving nlt1 and one after karyogamy that is nlt1 independent.


Assuntos
Tumores de Planta/microbiologia , Ustilago/patogenicidade , Zea mays/microbiologia , Basidiomycota , Proteínas Fúngicas/genética , Doenças das Plantas , Folhas de Planta , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Ustilago/genética , Zea mays/genética
6.
PLoS Genet ; 15(4): e1008093, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009462

RESUMO

Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.g., trimethylation of H3 lysine 9 or lysine 27 (H3K9me3, H3K27me3). To elucidate the role of heterochromatin on genome stability in Z. tritici, we deleted the genes encoding the methyltransferases responsible for H3K9me3 and H3K27me3, kmt1 and kmt6, respectively, and generated a double mutant. We combined experimental evolution and genomic analyses to determine the impact of these deletions on chromosome and genome stability, both in vitro and in planta. We used whole genome sequencing, ChIP-seq, and RNA-seq to compare changes in genome and chromatin structure, and differences in gene expression between mutant and wildtype strains. Analyses of genome and ChIP-seq data in H3K9me3-deficient strains revealed dramatic chromatin reorganization, where H3K27me3 is mostly relocalized into regions that are enriched with H3K9me3 in wild type. Many genome rearrangements and formation of new chromosomes were found in the absence of H3K9me3, accompanied by activation of transposable elements. In stark contrast, loss of H3K27me3 actually increased the stability of accessory chromosomes under normal growth conditions in vitro, even without large scale changes in gene activity. We conclude that H3K9me3 is important for the maintenance of genome stability because it disallows H3K27me3 in regions considered constitutive heterochromatin. In this system, H3K27me3 reduces the overall stability of accessory chromosomes, generating a "metastable" state for these quasi-essential regions of the genome.


Assuntos
Instabilidade Genômica , Histonas/metabolismo , Lisina/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Cromossomos Fúngicos , Deleção de Genes , Heterocromatina/genética , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Metilação , Sequências Repetitivas de Ácido Nucleico , Ativação Transcricional
7.
Plant Cell ; 30(2): 300-323, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29371439

RESUMO

The maize smut fungus Ustilago maydis is a model organism for elucidating host colonization strategies of biotrophic fungi. Here, we performed an in depth transcriptional profiling of the entire plant-associated development of U. maydis wild-type strains. In our analysis, we focused on fungal metabolism, nutritional strategies, secreted effectors, and regulatory networks. Secreted proteins were enriched in three distinct expression modules corresponding to stages on the plant surface, establishment of biotrophy, and induction of tumors. These modules are likely the key determinants for U. maydis virulence. With respect to nutrient utilization, we observed that expression of several nutrient transporters was tied to these virulence modules rather than being controlled by nutrient availability. We show that oligopeptide transporters likely involved in nitrogen assimilation are important virulence factors. By measuring the intramodular connectivity of transcription factors, we identified the potential drivers for the virulence modules. While known components of the b-mating type cascade emerged as inducers for the plant surface and biotrophy module, we identified a set of yet uncharacterized transcription factors as likely responsible for expression of the tumor module. We demonstrate a crucial role for leaf tumor formation and effector gene expression for one of these transcription factors.


Assuntos
Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Transcriptoma , Ustilago/genética , Fatores de Virulência/genética , Zea mays/microbiologia , Biomassa , Perfilação da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Nitrogênio/metabolismo , Tumores de Planta/microbiologia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Ustilago/crescimento & desenvolvimento , Ustilago/patogenicidade , Ustilago/fisiologia , Virulência/genética
8.
Bio Protoc ; 8(14): e2928, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395750

RESUMO

The smut fungus Ustilago maydis is an established model organism for elucidating how biotrophic pathogens colonize plants and how gene families contribute to virulence. Here we describe a step by step protocol for the generation of CRISPR plasmids for single and multiplexed gene editing in U. maydis. Furthermore, we describe the necessary steps required for generating edited clonal populations, losing the Cas9 containing plasmid, and for selecting the desired clones.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26430472

RESUMO

BACKGROUND: Supernumerary chromosomes have been found in many organisms. In fungi, these "accessory" or "dispensable" chromosomes are present at different frequencies in populations and are usually characterized by higher repetitive DNA content and lower gene density when compared to the core chromosomes. In the reference strain of the wheat pathogen, Zymoseptoria tritici, eight discrete accessory chromosomes have been found. So far, no functional role has been assigned to these chromosomes; however, they have existed as separate entities in the karyotypes of Zymoseptoria species over evolutionary time. In this study, we addressed what-if anything-distinguishes the chromatin of accessory chromosomes from core chromosomes. We used chromatin immunoprecipitation combined with high-throughput sequencing ("ChIP-seq") of DNA associated with the centromere-specific histone H3, CENP-A (CenH3), to identify centromeric DNA, and ChIP-seq with antibodies against dimethylated H3K4, trimethylated H3K9 and trimethylated H3K27 to determine the relative distribution and proportion of euchromatin, obligate and facultative heterochromatin, respectively. RESULTS: Centromeres of the eight accessory chromosomes have the same sequence composition and structure as centromeres of the 13 core chromosomes and they are of similar length. Unlike those of most other fungi, Z. tritici centromeres are not composed entirely of repetitive DNA; some centromeres contain only unique DNA sequences, and bona fide expressed genes are located in regions enriched with CenH3. By fluorescence microscopy, we showed that centromeres of Z. tritici do not cluster into a single chromocenter during interphase. We found dramatically higher enrichment of H3K9me3 and H3K27me3 on the accessory chromosomes, consistent with the twofold higher proportion of repetitive DNA and poorly transcribed genes. In contrast, no single histone modification tested here correlated with the distribution of centromeric nucleosomes. CONCLUSIONS: All centromeres are similar in length and composed of a mixture of unique and repeat DNA, and most contain actively transcribed genes. Centromeres, subtelomeric regions or telomere repeat length cannot account for the differences in transfer fidelity between core and accessory chromosomes, but accessory chromosomes are greatly enriched in nucleosomes with H3K27 trimethylation. Genes on accessory chromosomes appear to be silenced by trimethylation of H3K9 and H3K27.

10.
PLoS Pathog ; 11(7): e1005055, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26225424

RESUMO

The speciation of pathogens can be driven by divergent host specialization. Specialization to a new host is possible via the acquisition of advantageous mutations fixed by positive selection. Comparative genome analyses of closely related species allows for the identification of such key substitutions via inference of genome-wide signatures of positive selection. We previously used a comparative genomics framework to identify genes that have evolved under positive selection during speciation of the prominent wheat pathogen Zymoseptoria tritici (synonym Mycosphaerella graminicola). In this study, we conducted functional analyses of four genes exhibiting strong signatures of positive selection in Z. tritici. We deleted the four genes in Z. tritici and confirm a virulence-related role of three of the four genes ΔZt80707, ΔZt89160 and ΔZt103264. The two mutants ΔZt80707 and ΔZt103264 show a significant reduction in virulence during infection of wheat; the ΔZt89160 mutant causes a hypervirulent phenotype in wheat. Mutant phenotypes of ΔZt80707, ΔZt89160 and ΔZt103264 can be restored by insertion of the wild-type genes. However, the insertion of the Zt80707 and Zt89160 orthologs from Z. pseudotritici and Z. ardabiliae do not restore wild-type levels of virulence, suggesting that positively selected substitutions in Z. tritici may relate to divergent host specialization. Interestingly, the gene Zt80707 encodes also a secretion signal that targets the protein for cell secretion. This secretion signal is however only transcribed in Z. tritici, suggesting that Z. tritici-specific substitutions relate to a new function of the protein in the extracellular space of the wheat-Z. tritici interaction. Together, the results presented here highlight that Zt80707, Zt103264 and Zt89160 represent key genes involved in virulence and host-specific disease development of Z. tritici. Our findings illustrate that evolutionary predictions provide a powerful tool for the identification of novel traits crucial for host adaptation and pathogen evolution.


Assuntos
Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Evolução Molecular , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Triticum/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA