Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
ACS Omega ; 9(21): 23101-23110, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826547

RESUMO

The orexin receptor antagonist (ORA) is one of the new psychopharmacological agents used in the treatment of insomnia. There are currently no documented greener high-performance liquid chromatography-diode array detector (HPLC-DAD) methods for the analysis of ORA antagonists, lemborexant (LMB) and suvorexant (SUV) simultaneously. Therefore, in this study, a simple, sensitive, and greener HPLC-DAD method has been developed for the simultaneous quantitative analysis of LMB and SUV in bulk and laboratory-prepared mixture. The developed method was validated for numerous validation parameters and evaluated for greenness. The C18 Waters Spherisorb CN (4.6 × 250 mm2; 5 µm) column was used for the chromatographic separation. The mobile phase composition was ethanol: 10 mM KH2PO4 buffer in a ratio of (60:40 v/v). The DAD detection was performed at 253 nm using a Waters DAD detector. The greenness was evaluated using the analytical Eco-Scale (AES), ChlorTox, and analytical GREEnness (AGREE) techniques. The calibration curves showed excellent linearity for LMB and SUV between the concentration range of 125-5000 ng/mL and 250-10,000 ng/mL, respectively. In addition, the proposed HPLC-DAD method was accurate, precise, robust, highly sensitive, and greener. AES, ChlorTox, and AGREE scales were predicted by the HPLC-DAD method to be 91, 1.14 g, and 0.79, respectively, showing an excellent greenness profile. The greener HPLC-DAD method was successfully used to analyze both medicines quantitatively in bulk and laboratory-prepared synthetic mixtures. The findings of this study indicated that the proposed HPLC-DAD method may be consistently applied to evaluate LMB and SUV in bulk and dosage forms.

2.
ACS Omega ; 9(3): 3980-3987, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284045

RESUMO

Keeping in mind the health scenario in Kingdom of Saudi Arabia with respect to vitamin D3 (VD3) deficiency and its significant role in calcium homeostasis and human metabolism, this research is exploring the combination of eggshell (as a source of calcium) and VD3 as a very economical solution for this problem. Eggshells from local restaurant were collected, washed, ground, sieved, and characterized by Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) techniques. The results of FTIR, SEM, DSC, XRD, and BET indicate that eggshell powder (ESP) was properly processed. Directly compressed tablets containing 2.5 mg of VD3 (equivalent to 50,000 IU), that are based on the use of ESP as tablet filler, were manufactured based on mixing Avicel PH 101 with ESP in different ratios (9:1, 1:1, and 1:9) in addition to the use of both Avicel PH 101 and ESP alone as tablet filler. Tablets properties were evaluated according to USP30-NF25 pharmacopoeia tests in terms of weight variation test, drug content uniformity, tablet hardness, tablet friability, tablet disintegration, and in vitro dissolution profile. The VD3 contents were found to be 98.77-102.35% in all formulations. After 90 min of study, all formulations showed in vitro drug release content in the range of 99.29-101.05%. All of the tested parameters of ESP tablets were similar to those of commercial Avicel PH 101. All of the tested properties of tablets with ESP as a filler were found to be within the acceptable limits of the pharmacopeia recommendations. Therefore, ESP could be exploited for its use as a filler in direct compression tablets.

3.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067534

RESUMO

Cabozantinib malate (CBZM), a new anticancer medication, has been studied for its solubility and thermodynamic properties in a variety of {dimethyl sulfoxide (DMSO) + water (H2O)} mixtures at 298.2-318.2 K and 101.1 kPa. Using the shake flask technique, the solubility of CBZM was assessed and the results were correlated to the van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models. There was a significant correlation between the experimental CBZM solubility data and all computational models, as evidenced by the error values for all computational models being less than 5.0%. Temperature and DMSO mass percentage improved the CBZM mole fraction solubility in the cosolvent solutions of {DMSO + H2O}. At 318.2 K, pure DMSO had the highest mole fraction solubility of CBZM (4.38 × 10-2), whereas pure H2O had the lowest mole fraction solubility (2.24 × 10-7 at 298.2 K). The positive values of computed thermodynamic parameters indicated that the dissolution of CBZM was endothermic and entropy-driven in all of the {DMSO + H2O} solutions investigated. It was found that the CBZM solvation in {DMSO + H2O} solutions is governed by enthalpy. When compared to CBZM-H2O, CBZM-DMSO showed the highest molecular interactions. The findings of this investigation demonstrated that DMSO has a great deal of potential for CBZM solubilization in H2O.

4.
ACS Omega ; 8(44): 41755-41764, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970055

RESUMO

A nanoemulsion-based polyherbal mouthwash (PHFX) of Curcuma longa hydroalcoholic extract was developed and evaluated for its antibacterial effects against a variety of Gram-positive and Gram-negative oral pathogens in comparison to standard chlorhexidine acetate (CHD-A) (positive control). Various nanoemulsion-based mouthwashes of C. longa extract were produced using an aqueous phase titration approach via construction of pseudoternary phase diagrams. The developed nanoemulsion-based PHFX was studied for thermodynamic stability tests. Selected formulations (PHFX1-PHFX5) were characterized physicochemically for droplet diameter, polydispersity index (PDI), refractive index (RI), transmittance, and pH. The drug release studies were performed using the dialysis method. Based on the minimum droplet diameter (26.34 nm), least PDI (0.132), optimal RI (1.337), maximum %T (99.13), optimal pH (6.45), and maximum cumulative drug release (98.2%), formulation PHFX1 (containing 0.5% w/w of C. longa extract, 1.5% w/w of clove oil, 7.0% w/w of Tween-80, 7.0% w/w of Transcutol-HP, and 84.0% w/w of water) was selected for antimicrobial studies in comparison to standard CHD-A. The antibacterial effects and minimum inhibitory concentration were studied against various Gram-positive oral pathogens such as Streptococcus mutans, Staphylococcus aureus, Streptococcus pneumoniae, and Bacillus subtilis and Gram-negative oral pathogens such as Escherichia coli and Klebsiella pneumoniae. The antibacterial effects of PHFX1 were found to be significant over standard CHD-A against most Gram-positive and Gram-negative oral pathogens. The antimicrobial studies showed that the formulation PHFX1 was effective against all oral pathogens even at 3- to 4-fold lower working concentrations. These findings indicated the potential of nanoemulsion-based mouthwash in the treatment of a variety of oral pathogen infections.

5.
Molecules ; 28(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894589

RESUMO

The solubility and solution thermodynamics of isotretinoin (ITN) (3) in numerous {dimethyl sulfoxide (DMSO) (1) + water (H2O) (2)} combinations were studied at 298.2-318.2 K under fixed atmospheric pressure of 101.1 kPa. A shake flask methodology was used to determine ITN solubility, and correlations were made using the "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". In mixtures of {(DMSO (1) + H2O (2)}, the solubility of ITN in mole fractions was enhanced with the temperature and DMSO mass fraction. The mole fraction solubility of ITN was highest in neat DMSO (1.02 × 10-1 at 318.2 K) and lowest in pure H2O (3.14 × 10-7 at 298.2 K). The output of computational models revealed good relationships between the solubility data from the experiments. The dissolution of ITN was "endothermic and entropy-driven" in all of the {(DMSO (1) + H2O (2)} mixtures examined, according to the positive values of measured thermodynamic parameters. Enthalpy was discovered to be the driving force behind ITN solvation in {(DMSO (1) + H2O (2)} combinations. ITN-DMSO displayed the highest molecular interactions when compared to ITN-H2O. The outcomes of this study suggest that DMSO has a great potential for solubilizing ITN in H2O.

6.
ACS Omega ; 8(42): 39936-39944, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901554

RESUMO

There is a dearth of information in the literature regarding environmentally benign high-performance thin-layer chromatography (HPTLC) methods to determine tenoxicam (TNX). Therefore, designing and validating an HPTLC method to detect TNX in commercial tablets and capsules was the goal of this investigation. The green mobile phase utilized was the combination of ethanol/water/ammonia solution (50:45:5 v/v/v). The TNX was quantified at a wavelength of 375 nm. The proposed method's greenness profile was established using the Analytical GREEnness (AGREE) approach. The proposed methodology for determining TNX was linear in the range of 25-1400 ng/band. The proposed methodology for measuring TNX was accurate (% recoveries = 98.24-101.48), precise (% RSD = 0.87-1.02), robust (% RSD = 0.87-0.94), sensitive (LOD = 0.98 ng/band and LOQ = 2.94 ng/band), and environmentally friendly. The AGREE scale for the present methodology was derived to be 0.75, indicating an outstanding greenness profile. TNX was found to be highly stable under acidic, base, and thermal stress conditions. However, it completely decomposed under oxidative stress conditions. Commercial tablets and capsules were found to have 98.46 and 101.24% TNX, respectively. This finding supports the validity of the current methodology for measuring TNX in commercial formulations. The outcomes of this work showed that the proposed eco-friendly HPTLC methodology can be used for the routine analysis of TNX in commercial formulations.

7.
Heliyon ; 9(8): e18405, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576265

RESUMO

In this study, an environmentally friendly "high-performance liquid chromatography (HPLC)" assay to quantify isotretinoin (ITN) in commercial products and solubility samples is designed and verified. A Nucleodur reverse-phase C18 column was used as the stationary phase to identify ITN. The ecologically friendly mobile phase was composed of ethyl acetate and ethanol (50:50 v/v), and it was delivered at a flow rate of 1.0 mL/min. ITN was measured at 354 nm in wavelength. The current HPLC method had a determination coefficient of 0.9994 and was linear in the 0.2-80 µg/g range. The current protocol for ITN measurement was also rapid (retention time = 2.78 min), accurate (%recoveries = 98.60-101.52), precise (% uncertainties = 0.71-0.98), and sensitive. According to the AGREE methodology, the current procedure received an outstanding greenness profile with an AGREE score of 0.76. By determining ITN in commercial products and solubility samples, the applicability of the current approach was proven. ITN was discovered to be present in 98.43% and 100.84%, respectively, of commercial capsule brands A and B. The ITN's solubility in numerous eco-friendly solvents was successfully measured. Under different stress conditions, the current approach was able to distinguish between its degradation products, demonstrating its stability-indicating characteristics. These findings indicated that ITN in procured capsules and solubility samples might be regularly tested by the suggested approach.

8.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446763

RESUMO

Eco-friendly liquid chromatographic methods for measuring ergotamine (EGT) are scant in the published database. Accordingly, the goal of the current study was to develop a high-performance thin-layer chromatography (HPTLC) method for fluorescence detection of EGT in commercially available tablets. This approach was based on the application of ethyl alcohol-water (80:20 v/v) as the eco-friendly eluent mixture. The fluorescence detection of EGT was carried out at 322 nm. The greenness score of the present approach was evaluated by "Analytical GREENness (AGREE)" technology. The present approach for measuring EGT in the 25-1000 ng band-1 range was linear. The present assay for fluorescence detection of EGT was validated successfully by ICH guidelines for various parameters. The method was found to be rapid, sensitive, eco-friendly, and stability-indicating. The computed AGREE index for the current strategy was 0.84, displaying outstanding greenness features. The present methodology successfully separated the EGT degradation products under forced-degradation circumstances, exhibiting its stability-indicating qualities and selectivity. An amount of 99.33% of EGT was found in commercial formulations, indicating the validity of the current method for pharmaceutical analysis of EGT in commercial products. The results showed that EGT in commercial products might be regularly measured by the existing method.


Assuntos
Ergotaminas , Cromatografia em Camada Fina/métodos , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Comprimidos
9.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175381

RESUMO

Lung cancer is the main cause of cancer-related mortality globally. Erlotinib is a tyrosine kinase inhibitor, affecting both cancerous cell proliferation and survival. The emergence of oncological nanotechnology has provided a novel drug delivery system for erlotinib. The aims of this current investigation were to formulate two different polyamidoamine (PAMAM) dendrimer generations-generation 4 (G4) and generation 5 (G5) PAMAM dendrimer-to study the impact of two different PAMAM dendrimer formulations on entrapment by drug loading and encapsulation efficiency tests; to assess various characterizations, including particle size distribution, polydispersity index, and zeta potential; and to evaluate in vitro drug release along with assessing in situ human lung adenocarcinoma cell culture. The results showed that the average particle size of G4 and G5 nanocomposites were 200 nm and 224.8 nm, with polydispersity index values of 0.05 and 0.300, zeta potential values of 11.54 and 4.26 mV of G4 and G5 PAMAM dendrimer, respectively. Comparative in situ study showed that cationic G4 erlotinib-loaded dendrimer was more selective and had higher antiproliferation activity against A549 lung cells compared to neutral G5 erlotinib-loaded dendrimers and erlotinib alone. These conclusions highlight the potential effect of cationic G4 dendrimer as a targeting-sustained-release carrier for erlotinib.


Assuntos
Dendrímeros , Neoplasias Pulmonares , Humanos , Cloridrato de Erlotinib/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pulmonares/tratamento farmacológico , Pulmão
10.
Saudi Pharm J ; 31(1): 170-179, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685302

RESUMO

Background: Multidrug-resistant (MDR) bacterial infections have become an emerging health concern around the world. Antibiotics resistance among S. pneumoniae strains increased recently contributing to increase in incidence of pneumococcal infection. This necessitates the discovery of novel antipnemococcal such as compound C3-005 which target the interaction between RNA polymerase and σ factors. Chitosan nanoparticles (CNPs) exhibited antibacterial activity including S. pneumonia. Therefore, the aims of the current investigation were to formulate CNPs loaded with C3-005 and characteristic their antimicrobial properties against S. pneumonia. Methods: The CNPs and C3-005 loaded CNPs were produced utilizing ionic gelation method, and their physicochemical characteristics including particle size, zeta potential, polydispersity index (PDI), encapsulation efficiency (EE%), and in vitro release profile were studied. Both differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) were used for chemical characterization. The synthesized NPs' minimum inhibitory concentration (MIC) was determined using killing assay and broth dilution method, and their impact on bacteria induced hemolysis were also studied. Results: The NPs encapsulating C3-005 were successfully prepared with particle size of 343.5 nm ± 1.3, zeta potential of 29.8 ± 0.37, and PDI of 0.20 ± 0.03. 70 % of C3-005 were encapsulated in CNPs and sustained release pattern of C3-005 from CNPs was revealed by an in vitro release study. CNPs containing C3-005 exhibited higher antipnomcoccal activity with MIC50 of 30 µg/ml when compared with C3-005 and empty CNPs alone. The prepared C3-CNPs showed a reduction of bacterial hemolysis in a concentration-related (dependent) manner and was higher than C3-005 alone. Conclusions: The findings of this study showed the potential for using C3-005 loaded CNPs to treat pneumococcal infection.

11.
Materials (Basel) ; 15(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36431759

RESUMO

The solubilization and thermodynamic analysis of isotretinoin (ITN) in eleven distinct green solvents, such as water, methyl alcohol (MeOH), ethyl alcohol (EtOH), 1-butyl alcohol (1-BuOH), 2-butyl alcohol (2-BuOH), ethane-1,2-diol (EG), propane-1,2-diol (PG), polyethylene glycol-400 (PEG-400), ethyl acetate (EA), Transcutol-HP (THP), and dimethyl sulfoxide (DMSO) was studied at several temperatures and a fixed atmospheric pressure. The equilibrium approach was used to measure the solubility of ITN, and the Apelblat, van't Hoff, and Buchowski−Ksiazczak λh models were used to correlate the results. The overall uncertainties were less than 5.0% for all the models examined. The highest ITN mole fraction solubility was achieved as 1.01 × 10−1 in DMSO at 318.2 K; however, the least was achieved as 3.16 × 10−7 in water at 298.2 K. ITN solubility was found to be enhanced with an increase in temperature and the order in which it was soluble in several green solvents at 318.2 K was as follows: DMSO (1.01 × 10−1) > EA (1.73 × 10−2) > PEG-400 (1.66 × 10−2) > THP (1.59 × 10−2) > 2-BuOH (6.32 × 10−3) > 1-BuOH (5.88 × 10−3) > PG (4.83 × 10−3) > EtOH (3.51 × 10−3) > EG (3.49 × 10−3) > MeOH (2.10 × 10−3) > water (1.38 × 10−6). ITN−DMSO showed the strongest solute−solvent interactions when compared to the other ITN and green solvent combinations. According to thermodynamic studies, ITN dissolution was endothermic and entropy-driven in all of the green solvents tested. The obtained outcomes suggested that DMSO appears to be the best green solvent for ITN solubilization.

12.
Materials (Basel) ; 15(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295383

RESUMO

The solubility of the poorly soluble medicine febuxostat (FXT) (3) in various {polyethylene glycol 400 (PEG 400) (1) + water (H2O) (2)} mixtures has been examined at 298.2-318.2 K and 101.1 kPa. FXT solubility was measured using an isothermal method and correlated with "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". FXT mole fraction solubility was enhanced via an increase in temperature and PEG 400 mass fraction in {(PEG 400 (1) + H2O (2)} mixtures. Neat PEG 400 showed the highest mole fraction solubility of FXT (3.11 × 10-2 at 318.2 K), while neat H2O had the lowest (1.91 × 10-7 at 298.2 K). The overall error value was less than 6.0% for each computational model, indicating good correlations. Based on the positive values of apparent standard enthalpies (46.72-70.30 kJ mol-1) and apparent standard entropies (106.4-118.5 J mol-1 K-1), the dissolution of FXT was "endothermic and entropy-driven" in all {PEG 400 (1) + H2O (2)} mixtures examined. The main mechanism for FXT solvation in {PEG 400 (1) + H2O (2)} mixtures was discovered to be an enthalpy-driven process. In comparison to FXT-H2O, FXT-PEG 400 showed the strongest molecular interactions. In conclusion, these results suggested that PEG 400 has considerable potential for solubilizing a poorly soluble FXT in H2O.

13.
Pharmaceutics ; 14(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890338

RESUMO

Ruboxistaurin (RBX) is an anti-vascular endothelial growth factor (anti-VEGF) agent that is used in the treatment of diabetic retinopathy and is mainly given intravitreally. To provide a safe and effective method for RBX administration, this study was designed to develop RBX nanoparticles using polyamidoamine (PAMAM) dendrimer generation 5 for the treatment of diabetic retinopathy. Drug loading efficiency, and in vitro release of proposed complexes of RBX: PAMAM dendrimers were determined and the complexation ratio that showed the highest possible loading efficiency was selected. The drug loading efficiency (%) of 1:1, 2.5:1, and 5:1 complexes was 89.2%, 96.4%, and 97.6%, respectively. Loading capacities of 1:1, 2.5:1, and 5:1 complexes were 1.6%, 4.0%, and 7.2% respectively. In comparison, the 5:1 complex showed the best results in the aforementioned measurements. The in vitro release studies showed that in 8 h, the RBX release from 1:1, 2.5:1, and 5:1 complexes was 37.5%, 35.9%, and 77.0%, respectively. In particular, 5:1 complex showed the highest drug release. In addition, particle size measurements showed that the diameter of empty PAMAM dendrimers was 214.9 ± 8.5 nm, whereas the diameters of loaded PAMAM dendrimers in 1:1, 2.5:1, 5:1 complexes were found to be 461.0 ± 6.4, 482.4 ± 12.5, and 420.0 ± 7.1 nm, respectively. Polydispersity index (PDI) showed that there were no significant changes in the PDI between the free and loaded PAMAM dendrimers. The zeta potential measurements showed that the free and loaded nanoparticles possessed neutral charges due to the presence of anionic and cationic terminal structures. Furthermore, the safety of this formulation was apparent on the viability of the MIO-M1 cell lines. This nanoformulation will improve the therapeutic outcomes of anti-VEGF therapy and the bioavailability of RBX to prevent vision loss in patients with diabetic retinopathy.

14.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807294

RESUMO

This study examines the solubility and thermodynamics of febuxostat (FBX) in a variety of mono solvents, including "water, methanol (MeOH), ethanol (EtOH), isopropanol (IPA), 1-butanol (1-BuOH), 2-butanol (2-BuOH), ethylene glycol (EG), propylene glycol (PG), polyethylene glycol-400 (PEG-400), ethyl acetate (EA), Transcutol-HP (THP), and dimethyl sulfoxide (DMSO)" at 298.2−318.2 K and 101.1 kPa. The solubility of FBX was determined using a shake flask method and correlated with "van't Hoff, Buchowski-Ksiazczak λh, and Apelblat models". The overall error values for van't Hoff, Buchowski-Ksiazczak λh, and Apelblat models was recorded to be 1.60, 2.86, and 1.14%, respectively. The maximum mole fraction solubility of FBX was 3.06 × 10−2 in PEG-400 at 318.2 K, however the least one was 1.97 × 10−7 in water at 298.2 K. The FBX solubility increased with temperature and the order followed in different mono solvents was PEG-400 (3.06 × 10−2) > THP (1.70 × 10−2) > 2-BuOH (1.38 × 10−2) > 1-BuOH (1.37 × 10−2) > IPA (1.10 × 10−2) > EtOH (8.37 × 10−3) > EA (8.31 × 10−3) > DMSO (7.35 × 10−3) > MeOH (3.26 × 10−3) > PG (1.88 × 10−3) > EG (1.31 × 10−3) > water (1.14 × 10−6) at 318.2 K. Compared to the other combinations of FBX and mono solvents, FBX-PEG-400 had the strongest solute-solvent interactions. The apparent thermodynamic analysis revealed that FBX dissolution was "endothermic and entropy-driven" in all mono solvents investigated. Based on these findings, PEG-400 appears to be the optimal co-solvent for FBX solubility.


Assuntos
Dimetil Sulfóxido , Febuxostat , 2-Propanol , Metanol , Solubilidade , Solventes , Temperatura , Termodinâmica , Água
15.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889340

RESUMO

Various chitosan (CS)-based nanoparticles (CS-NPs) of ciprofloxacin hydrochloride (CHCl) have been investigated for therapeutic delivery and to enhance antimicrobial efficacy. However, the Box-Behnken design (BBD)-supported statistical optimization of NPs of CHCl has not been performed in the literature. As a result, the goal of this study was to look into the key interactions and quadratic impacts of formulation variables on the performance of CHCl-CS-NPs in a systematic way. To optimize CHCl-loaded CS-NPs generated by the ionic gelation process, the response surface methodology (RSM) was used. The BBD was used with three factors on three levels and three replicas at the central point. Tripolyphosphate, CS concentrations, and ultrasonication energy were chosen as independent variables after preliminary screening. Particle size (PS), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), and in vitro release were the dependent factors (responses). Prepared NPs were found in the PS range of 198-304 nm with a ZP of 27-42 mV. EE and drug release were in the range of 23-45% and 36-61%, respectively. All of the responses were optimized at the same time using a desirability function based on Design Expert® modeling and a desirability factor of 95%. The minimum inhibitory concentration (MIC) of the improved formula against two bacterial strains, Pseudomonas aeruginosa and Staphylococcus aureus, was determined. The MIC of the optimized NPs was found to be decreased 4-fold compared with pure CHCl. The predicted and observed values for the optimized formulation were nearly identical. The BBD aided in a better understanding of the intrinsic relationship between formulation variables and responses, as well as the optimization of CHCl-loaded CS-NPs in a time- and labor-efficient manner.


Assuntos
Quitosana , Nanopartículas , Ciprofloxacina/farmacologia , Portadores de Fármacos , Tamanho da Partícula , Projetos de Pesquisa
16.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630561

RESUMO

Psoriatic arthritis is an autoimmune disease of the joints that can lead to persistent inflammation, irreversible joint damage and disability. The current treatments are of limited efficacy and inconvenient. Apremilast (APR) immediate release tablets Otezla® have 20-33% bioavailability compared to the APR absolute bioavailability of 73%. As a result, self-nanoemulsifying drug delivery systems (SNEDDS) of APR were formulated to enhance APR's solubility, dissolution, and oral bioavailability. The drug assay was carried out using a developed and validated HPLC method. Various thermodynamic tests were carried out on APR-SNEDDS. Stable SNEDDS were characterized then subjected to in vitro drug release studies via dialysis membrane. The optimum formulation was F9, which showed the maximum in vitro drug release (94.9%) over 24 h, and this was further investigated in in vivo studies. F9 was composed of 15% oil, 60% Smix, and 25% water and had the lowest droplet size (17.505 ± 0.247 nm), low PDI (0.147 ± 0.014), low ZP (-13.35 mV), highest %T (99.15 ± 0.131) and optimum increases in the relative bioavailability (703.66%) compared to APR suspension (100%) over 24 h. These findings showed that APR-SNEDDS is a possible alternative delivery system for APR. Further studies are warranted to evaluate the major factors that influence the encapsulation efficiency and stability of APR-containing SNEDDS.


Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Emulsões , Tamanho da Partícula , Diálise Renal , Talidomida/análogos & derivados
17.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946581

RESUMO

Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was -30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.


Assuntos
Sistemas de Liberação de Medicamentos , Fígado/efeitos dos fármacos , Luteolina/farmacologia , Nanopartículas/química , Substâncias Protetoras/farmacologia , Administração Oral , Animais , Tetracloreto de Carbono/farmacologia , Emulsões/administração & dosagem , Emulsões/metabolismo , Emulsões/farmacologia , Fígado/metabolismo , Luteolina/administração & dosagem , Luteolina/metabolismo , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Tamanho da Partícula , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Ratos , Ratos Wistar , Solubilidade , Termodinâmica
18.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443336

RESUMO

We develop a suitable delivery system for niaouli essential oil (NEO) using a nanoemulsification method for acne vulgaris. Prepared nanoemulsions (NEs) were characterized for droplet dimension, rheology, surface charge, and stability. The ability of NEO formulations against Propionibacterium acnes and Staphylococcus epidermidis was investigated and all formulations showed antiacne potential in vitro. Ex vivo permeation studies indicated significant improvement in drug permeations and steady state flux of all NEO-NEs compared to the neat NEO (p < 0.05). On the basis of the studied pharmaceutical parameters, enhanced ex vivo skin permeation, and marked effect on acne pathogens, formulation NEO-NE4 was found to be the best (oil (NEO; 10% v/v); Kolliphor EL (9.25% v/v), Carbitol (27.75% v/v), and water (53% v/v)). Concisely, the in vitro and ex vivo results revealed that nanoemulsification improved the delivery as well as bioactivities of NEO significantly.


Assuntos
Portadores de Fármacos/química , Melaleuca/química , Nanoestruturas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Emulsões , Óleos Voláteis/metabolismo , Permeabilidade , Pele/metabolismo , Staphylococcus epidermidis/efeitos dos fármacos
19.
Saudi J Biol Sci ; 28(5): 2649-2654, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025149

RESUMO

Sesame (Sesamum indicum L.) is an important staple crop of the family Pedaliaceae. The commercial production of sesame is still dependent on the applications of chemical fertilizers. Mycorrhiza inoculum resulted in better morphological and biochemical traits in vegetables. Thus, here the outcome of arbuscular mycorrhizal fungi (AMF) and Pseudomonas fluorescence (ATCC-17400) inoculation was studied in the pot culture experiment. Primarily, there seems to be a promising opportunity of AMF in sesame under pot and field trials because of enhanced morphological parameters, especially root weight, and disparities in nutrients and metabolites. The AMF appears to be an option to boost plant growth, mineral content, and sesame yield. The AMF treatment with Pseudomonas fluorescence strain (ATCC-17400) determined the maximum values for the morphological traits and mineral content. Overall, our study highlights mycorrhizal fungi and other microbes efficacy in achieving a successful sesame production.

20.
PLoS One ; 16(4): e0249485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831070

RESUMO

The aim of this work was to solubilize simvastatin (SIM) using different micellar solutions of various non-ionic surfactants such as Tween-80 (T80), Tween-20 (T20), Myrj-52 (M52), Myrj-59 (M59), Brij-35 (B35) and Brij-58 (B58). The solubility of SIM in water (H2O) and different micellar concentrations of T80, T20, M52, M59, B35 and B58 was determined at temperatures T = 300.2 K to 320.2 K under atmospheric pressure p = 0.1 MPa using saturation shake flask method. The experimental solubility data of SIM was regressed using van't Hoff and Apelblat models. The solubility of SIM (mole fraction) was recorded highest in M59 (1.54 x 10-2) followed by M52 (6.56 x 10-3), B58 (5.52 x 10-3), B35 (3.97 x 10-3), T80 (1.68 x 10-3), T20 (1.16 x 10-3) [the concentration of surfactants was 20 mM in H2O in all cases] and H2O (1.94 x 10-6) at T = 320.2 K. The same results were also recorded at each temperature and each micellar concentration of T80, T20, M52, M59, B35 and B58. "Apparent thermodynamic analysis" showed endothermic and entropy-driven dissolution/solubilization of SIM in H2O and various micellar solutions of T80, T20, M52, M59, B35 and B58.


Assuntos
Micelas , Modelos Moleculares , Sinvastatina/química , Tensoativos/química , Conformação Molecular , Polietilenoglicóis/química , Solubilidade , Solventes/química , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA