Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 298: 113483, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391107

RESUMO

Ever-growing demands for energy, the unsustainability of fossil fuel due to its scarcity and massive impact on global economies and the environment, have encouraged the research on alternative power sources to work upon for the governments, companies, and scientists across the world. Enzymatic biofuel cells (eBFCs) is one category of fuel cell that can harvest energy from biological moieties and has the future to be used as an alternative source of energy. The aim of this review is to summarize the background and state-of-the-art in the field of eBFCs. This review article will be very beneficial for a wide audience including students and new researchers in the field. A part of the paper summarized the challenges in the preparation of anode and cathode and the involvement of nanomaterials and conducting polymers to construct the effective bioelectrodes. It will provide an insight for the researchers working in this challenging field. Furthermore, various applications of eBFCs in implantable power devices, tiny electronic gadgets, and self powered biosensors are reported. This review article explains the development in the area of eBFCs for several years from its origin to growth systematically. It reveals the strategies that have been taken for the improvements required for the better electrochemical performance and operational stability of eBFCs. It also mentions the challenges in this field that will require proper attention so that the eBFCs can be utilized commercially in the future. The review article is written and structurized in a way so that it can provide a decent background of eBFCs to its reader. It will definitely help in enhancing the interest of reader in eBFCs.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Nanoestruturas , Eletrodos , Humanos , Polímeros
2.
Sci Rep ; 10(1): 10428, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591600

RESUMO

A glassy carbon electrode (GC) immobilized with chitosan (CHI)@reduced graphene (rGO)-polyaniline (PAni)/ferritin (Frt)/glucose oxidase (GOx) bioelectrode was prepared. The prepared electrode was characterized by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques. The morphological characterization was made by scanning electron microsopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. This bioelectrode provided a stable current response of 3.5 ± 0.02 mAcm-2 in 20 mM glucose. The coverage of enzyme on 0.07 cm2 area of electrode modified with CHI@rGO-PAni/Frt was calculated to be 3.80 × 10-8 mol cm-2.

3.
Sci Rep ; 7(1): 12703, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983079

RESUMO

Polyaniline-silver (PANI-Ag)/ferritin (Frt)/glucose oxidase (GOx) biocompatible anode was utilized for creating power from glucose. The synthesized nanocomposite was investigated by EIS (Electrochemical impedance spectroscopy), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy), CV (Cyclic voltammetry), and LSV (Linear sweep voltammetry) to know the morphology, crystallinity and electrochemical behaviour of the nanocomposite. The electroactive support (PANI-Ag) was utilized for the immobilization of the enzyme (GOx) and a biocompatible mediator (Frt) to enhance the electrical signals. The electrochemical estimations of the manufactured bioanode were done by utilizing cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The current density obtained by the PANI-Ag/Frt/GOx bioanode was observed to be 25.40 ± 2 mA cm-2 at 40 mM of glucose concentration at a scan rate of 100 mVs-1.

4.
Enzyme Microb Technol ; 87-88: 29-36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27178792

RESUMO

In this study, a bioanode was developed by using layer-by-layer (LBL) assembly of sulfonated graphene (SG)/ferritin (Frt)/glucose oxidase (GOx). The SG/Frt biocomposite was used as an electron transfer elevator and mediator, respectively. Glucose oxidase (GOx) from Aspergillus niger was applied as a glucose oxidation biocatalyst. The electrocatalytic oxidation of glucose using GOx modified electrode increases with an increase in the concentration of glucose in the range of 10-50mM. The electrochemical measurements of the electrode was carried out by using cyclic voltammetry (CV) at different scan rates (20-100mVs(-1)) in 30mM of glucose solution prepared in 0.3M potassium ferrocyanide (K4Fe(CN)6) and linear sweep voltammetry (LSV). A saturation current density of 50±2mAcm(-2) at a scan rate of 100mVs(-1) for the oxidation of 30Mm glucose is achieved.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase/metabolismo , Aspergillus niger/enzimologia , Biocatálise , Fontes de Energia Bioelétrica , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons , Enzimas Imobilizadas/metabolismo , Ferritinas , Glucose/metabolismo , Grafite , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA