Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Leuk Res ; 134: 107390, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776843

RESUMO

Splicing factor (SF) gene mutations are frequent in myelodysplastic syndromes (MDS), and agents that modulate RNA splicing are hypothesized to provide clinical benefit. JNJ-64619178, a protein arginine methyltransferase 5 (PRMT5) inhibitor, was evaluated in patients with lower-risk (LR) MDS in a multi-part, Phase 1, multicenter study. The objectives were to determine a tolerable dose and to characterize safety, pharmacokinetics, pharmacodynamics, and preliminary clinical activity. JNJ-64619178 was administered on a 14 days on/7 days off schedule or every day on a 21-day cycle to patients with International Prognostic Scoring System (IPSS) Low or Intermediate-1 risk MDS who were red blood cell transfusion-dependent. Twenty-four patients were enrolled; 15 (62.5 %) patients had low IPSS risk score, while 18 (75.0 %) had an SF3B1 mutation. Median duration of treatment was 3.45 months (range: 0.03-6.93). No dose limiting toxicities were observed. The 0.5 mg once daily dose was considered better tolerated and chosen for dose expansion. Twenty-three (95.8 %) patients experienced treatment-emergent adverse events (TEAE). The most common TEAEs were neutropenia (15 [62.5 %]) and thrombocytopenia (14 [58.3 %]). JNJ-64619178 pharmacokinetics was dose-dependent. Target engagement as measured by plasma symmetric di-methylarginine was observed across all dose levels; however, variant allele frequency of clonal mutations in bone marrow or blood did not show sustained reductions from baseline. No patient achieved objective response or hematologic improvement per International Working Group 2006 criteria, or transfusion independence. A tolerable dose of JNJ-64619178 was identified in patients with LR MDS. However, no evidence of clinical benefit was observed.


Assuntos
Anemia , Síndromes Mielodisplásicas , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Anemia/tratamento farmacológico , Medula Óssea , Resultado do Tratamento
5.
Clin Lymphoma Myeloma Leuk ; 21(1): e76-e83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32921593

RESUMO

BACKGROUND: Newly diagnosed patients with acute myeloid leukemia (AML) who receive induction with a hypomethylating agent (HMA) are often neutropenic with an increased risk for invasive fungal infections (IFIs). This study analyzed the incidence and risk factors for IFIs in these patients, evaluated clinical patterns in antifungal prophylaxis, and assessed the diagnostic utility of tests in this setting. PATIENTS AND METHODS: We studied 117 newly diagnosed patients with AML treated with HMAs at our center, divided into groups based on concern for IFI (cIFI: all possible, probable, and proven IFIs) versus no concern for IFI. The Fisher exact test compared patients with cIFI versus without, and a multivariable logistic regression model estimated odds for cIFI. RESULTS: Sixty-seven (57%) patients had cIFI, with 48 possible IFIs, 17 probable, and 2 proven cases. There was no difference in incidence based on home zip code, but the presence of chronic obstructive pulmonary disease was highly associated with cIFI (P = .001), as was male gender (P = .01). Neutropenia at treatment initiation was borderline in significance (P = .08). In diagnostics, 9% of patients had positive serum fungal markers, and 30 patients underwent bronchoscopy, with only 27% of cases yielding positive results. There was a difference in treatment regimens between patients receiving antifungal prophylaxis with mold coverage versus without mold coverage with respect to cIFI (P = .04). CONCLUSIONS: cIFI in patients with AML treated with HMAs remains significant, especially in males and those with chronic obstructive pulmonary disease, who were found to be at higher risk. This may prompt clinicians to consider anti-mold prophylaxis in this setting.


Assuntos
Antifúngicos/uso terapêutico , Infecções Fúngicas Invasivas/tratamento farmacológico , Leucemia Mieloide Aguda/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Antifúngicos/farmacologia , Feminino , Humanos , Incidência , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
6.
Int J Hematol Oncol ; 9(3): IJH28, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-33014332

RESUMO

AIM: There are limited data describing incidence of symptomatic venous thromboembolism (VTE) in adolescent and young adult (AYA) acute lymphoblastic leukemia (ALL) patients receiving peg-asparaginase. MATERIALS & METHODS: Single-institution retrospective analysis of 44 AYA ALL patients treated with peg-asparaginase. Rates of VTE and proposed risk factors were assessed. RESULTS: 18 patients (41%) had a symptomatic VTE following peg-asparaginase. The cumulative incidence rate was 25% (95% CI: 13-38%) within 30 days of the initial dose. Personal history of thrombosis was statistically significantly associated with an increased risk of VTE with HR of 2.73 (95% CI: 1.40-5.33, p = 0.003) after adjusting for gender. CONCLUSION: These data indicate a high rate of VTE in the AYA ALL population following treatment with peg-asparaginase.

7.
J Clin Med ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932930

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has resulted in efforts to identify therapies to ameliorate adverse clinical outcomes. The recognition of the key role for increased inflammation in COVID-19 has led to a proliferation of clinical trials targeting inflammation. The purpose of this review is to characterize the current state of immunotherapy trials in COVID-19, and focuses on associated cardiotoxicities, given the importance of pharmacovigilance. The search terms related to COVID-19 were queried in ClinicalTrials.gov. A total of 1621 trials were identified and screened for interventional trials directed at inflammation. Trials (n = 226) were fully assessed for the use of a repurposed drug, identifying a total of 141 therapeutic trials using a repurposed drug to target inflammation in COVID-19 infection. Building on the results of the Randomized Evaluation of COVID-19 Therapy (RECOVERY) trial demonstrating the benefit of low dose dexamethasone in COVID-19, repurposed drugs targeting inflammation are promising. Repurposed drugs directed at inflammation in COVID-19 primarily have been drawn from cancer therapies and immunomodulatory therapies, specifically targeted anti-inflammatory, anti-complement, and anti-rejection agents. The proposed mechanisms for many cytokine-directed and anti-rejection drugs are focused on evidence of efficacy in cytokine release syndromes in humans or animal models. Anti-complement-based therapies have the potential to decrease both inflammation and microvascular thrombosis. Cancer therapies are hypothesized to decrease vascular permeability and inflammation. Few publications to date describe using these drugs in COVID-19. Early COVID-19 intervention trials have re-emphasized the subtle, but important cardiotoxic sequelae of potential therapies on outcomes. The volume of trials targeting the COVID-19 hyper-inflammatory phase continues to grow rapidly with the evaluation of repurposed drugs and late-stage investigational agents. Leveraging known clinical safety profiles and pharmacodynamics allows swift investigation in clinical trials for a novel indication. Physicians should remain vigilant for cardiotoxicity, often not fully appreciated in small trials or in short time frames.

8.
Plant Physiol ; 183(3): 1391-1404, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32321844

RESUMO

Self-incompatibility (SI) is used by many angiosperms to prevent self-fertilization and inbreeding. In common poppy (Papaver rhoeas), interaction of cognate pollen and pistil S-determinants triggers programmed cell death (PCD) of incompatible pollen. We previously identified that reactive oxygen species (ROS) signal to SI-PCD. ROS-induced oxidative posttranslational modifications (oxPTMs) can regulate protein structure and function. Here, we have identified and mapped oxPTMs triggered by SI in incompatible pollen. Notably, SI-induced pollen had numerous irreversible oxidative modifications, while untreated pollen had virtually none. Our data provide a valuable analysis of the protein targets of ROS in the context of SI-induction and comprise a benchmark because currently there are few reports of irreversible oxPTMs in plants. Strikingly, cytoskeletal proteins and enzymes involved in energy metabolism are a prominent target of ROS. Oxidative modifications to a phosphomimic form of a pyrophosphatase result in a reduction of its activity. Therefore, our results demonstrate irreversible oxidation of pollen proteins during SI and provide evidence that this modification can affect protein function. We suggest that this reduction in cellular activity could lead to PCD.


Assuntos
Papaver/fisiologia , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Autoincompatibilidade em Angiospermas/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peróxido de Hidrogênio/toxicidade , Pirofosfatase Inorgânica/metabolismo , Nitrosação , Oxirredução , Papaver/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/química , Pólen/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , Solubilidade
9.
JCI Insight ; 52019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31120863

RESUMO

Many cytokines and chemokines that are important for hematopoiesis activate the PI3K signaling pathway. Because this pathway is frequently mutated and activated in cancer, PI3K inhibitors have been developed for the treatment of several malignancies, and are now being tested in the clinic in combination with chemotherapy. However, the role of PI3K in adult hematopoietic stem cells (HSCs), particularly during hematopoietic stress, is still unclear. We previously showed that the individual PI3K catalytic isoforms P110α or P110ß have dispensable roles in HSC function, suggesting redundancy between PI3K isoforms in HSCs. We now demonstrate that simultaneous deletion of P110α and P110δ in double knockout (DKO) HSCs uncovers their redundant requirement in HSC cycling after 5-fluorouracil (5-FU) chemotherapy administration. In contrast, DKO HSCs are still able to exit quiescence in response to other stress stimuli, such as LPS. We found that DKO HSCs and progenitors have impaired sensing of inflammatory signals ex vivo, and that levels of IL1-ß and MIG are higher in the bone marrow after LPS than after 5-FU administration. Furthermore, exogenous in vivo administration of IL1-ß can induce cell cycle entry of DKO HSCs. Our findings have important clinical implications for the use of PI3K inhibitors in combination with chemotherapy.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Medula Óssea/efeitos dos fármacos , Ciclo Celular , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Fluoruracila/farmacologia , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Isoformas de Proteínas
11.
Front Oncol ; 7: 265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181334

RESUMO

Hematopoietic stem cells (HSCs) are a rare subset of bone marrow cells that usually exist in a quiescent state, only entering the cell cycle to replenish the blood compartment, thereby limiting the potential for errors in replication. Inflammatory signals that are released in response to environmental stressors, such as infection, trigger active cycling of HSCs. These inflammatory signals can also directly induce HSCs to release cytokines into the bone marrow environment, promoting myeloid differentiation. After stress myelopoiesis is triggered, HSCs require intracellular signaling programs to deactivate this response and return to steady state. Prolonged or excessive exposure to inflammatory cytokines, such as in prolonged infection or in chronic rheumatologic conditions, can lead to continued HSC cycling and eventual HSC loss. This promotes bone marrow failure, and can precipitate preleukemic states or leukemia through the acquisition of genetic and epigenetic changes in HSCs. This can occur through the initiation of clonal hematopoiesis, followed by the emergence preleukemic stem cells (pre-LSCs). In this review, we describe the roles of multiple inflammatory signaling pathways in the generation of pre-LSCs and in progression to myelodysplastic syndrome (MDS), myeloproliferative neoplasms, and acute myeloid leukemia (AML). In AML, activation of some inflammatory signaling pathways can promote the cycling and differentiation of LSCs, and this can be exploited therapeutically. We also discuss the therapeutic potential of modulating inflammatory signaling for the treatment of myeloid malignancies.

12.
Plant Physiol ; 173(3): 1606-1616, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28126844

RESUMO

Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca2+ and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Papaver/enzimologia , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Cálcio/metabolismo , Cálcio/farmacologia , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Oxidantes/farmacologia , Papaver/genética , Fosforilação , Filogenia , Proteínas de Plantas/genética , Pólen/genética , Proteínas Quinases/classificação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Solubilidade , Especificidade por Substrato , Espectrometria de Massas em Tandem
13.
Plant Physiol ; 167(3): 766-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25630437

RESUMO

Self-incompatibility (SI) is an important genetically controlled mechanism to prevent inbreeding in higher plants. SI involves highly specific interactions during pollination, resulting in the rejection of incompatible (self) pollen. Programmed cell death (PCD) is an important mechanism for destroying cells in a precisely regulated manner. SI in field poppy (Papaver rhoeas) triggers PCD in incompatible pollen. During SI-induced PCD, we previously observed a major acidification of the pollen cytosol. Here, we present measurements of temporal alterations in cytosolic pH ([pH]cyt); they were surprisingly rapid, reaching pH 6.4 within 10 min of SI induction and stabilizing by 60 min at pH 5.5. By manipulating the [pH]cyt of the pollen tubes in vivo, we show that [pH]cyt acidification is an integral and essential event for SI-induced PCD. Here, we provide evidence showing the physiological relevance of the cytosolic acidification and identify key targets of this major physiological alteration. A small drop in [pH]cyt inhibits the activity of a soluble inorganic pyrophosphatase required for pollen tube growth. We also show that [pH]cyt acidification is necessary and sufficient for triggering several key hallmark features of the SI PCD signaling pathway, notably activation of a DEVDase/caspase-3-like activity and formation of SI-induced punctate actin foci. Importantly, the actin binding proteins Cyclase-Associated Protein and Actin-Depolymerizing Factor are identified as key downstream targets. Thus, we have shown the biological relevance of an extreme but physiologically relevant alteration in [pH]cyt and its effect on several components in the context of SI-induced events and PCD.


Assuntos
Apoptose/efeitos dos fármacos , Citosol/metabolismo , Papaver/citologia , Tubo Polínico/citologia , Propionatos/farmacologia , Autoincompatibilidade em Angiospermas/efeitos dos fármacos , Actinas/metabolismo , Calcimicina/farmacologia , Cálcio/farmacologia , Caspase 3/metabolismo , Citosol/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Pirofosfatase Inorgânica/metabolismo , Ionóforos/farmacologia , Papaver/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/efeitos dos fármacos , Solubilidade , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
14.
Biochem Soc Trans ; 42(2): 370-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646246

RESUMO

Self-fertilization, which results in reduced fitness of offspring, is a common problem in hermaphrodite angiosperms. To prevent this, many plants utilize SI (self-incompatibility), which is determined by the multi-allelic S-locus, that allows discrimination between self (incompatible) and non-self (compatible) pollen by the pistil. In poppy (Papaver rhoeas), the pistil S-determinant (PrsS) is a small secreted protein which interacts with the pollen S-determinant PrpS, a ~20 kDa novel transmembrane protein. Interaction of matching pollen and pistil S-determinants results in self-recognition, initiating a Ca²âº-dependent signalling network in incompatible pollen. This triggers several downstream events, including alterations to the cytoskeleton, phosphorylation of sPPases (soluble inorganic pyrophosphatases) and an MAPK (mitogen-activated protein kinase), increases in ROS (reactive oxygen species) and nitric oxide (NO), and activation of several caspase-like activities. This results in the inhibition of pollen tube growth, prevention of self-fertilization and ultimately PCD (programmed cell death) in incompatible pollen. The present review focuses on our current understanding of the integration of these signals with their targets in the SI/PCD network. We also discuss our recent functional expression of PrpS in Arabidopsis thaliana pollen.


Assuntos
Papaver/metabolismo , Papaver/fisiologia , Proteínas de Plantas/metabolismo , Polinização/fisiologia , Citoesqueleto/genética , Citoesqueleto/metabolismo , Óxido Nítrico/metabolismo , Papaver/genética , Proteínas de Plantas/genética , Polinização/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA