Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724563

RESUMO

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Assuntos
Diferenciação Celular , Neurônios , Transdução de Sinais , Temperatura , Animais , Células PC12 , Neurônios/fisiologia , Neurônios/citologia , Camundongos , Ratos , Crescimento Neuronal , Neurogênese/fisiologia , Neuritos/metabolismo , Neuritos/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Termometria/métodos , Termogênese/fisiologia
2.
Nanoscale Adv ; 5(9): 2590-2601, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143804

RESUMO

Cellular transport systems are sophisticated and efficient. Hence, one of the ultimate goals of nanotechnology is to design artificial transport systems rationally. However, the design principle has been elusive, because how motor layout affects motile activity has not been established, partially owing to the difficulty in achieving a precise layout of the motile elements. Here, we employed a DNA origami platform to evaluate the two-dimensional (2D) layout effect of kinesin motor proteins on transporter motility. We succeeded in accelerating the integration speed of the protein of interest (POI) to the DNA origami transporter by up to 700 times by introducing a positively charged poly-lysine tag (Lys-tag) into the POI (kinesin motor protein). This Lys-tag approach allowed us to construct and purify a transporter with high motor density, allowing a precise evaluation on the 2D layout effect. Our single-molecule imaging showed that the densely packed layout of kinesin decreased the run length of the transporter, although its velocity was moderately affected. These results indicate that steric hindrance is a critical parameter to be considered in the design of transport systems.

3.
ACS Appl Mater Interfaces ; 15(17): 21413-21424, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071076

RESUMO

Silicon carbide (SiC) nanoparticles containing lattice defects are attracting considerable attention as next-generation imaging probes and quantum sensors for visualizing and sensing life activities. However, SiC nanoparticles are not currently used in biomedical applications because of the lack of technology for controlling their physicochemical properties. Therefore, in this study, SiC nanoparticles are deaggregated, surface-coated, functionalized, and selectively labeled to biomolecules of interest. A thermal-oxidation chemical-etching method is developed for deaggregating and producing a high yield of dispersed metal-contaminant-free SiC nanoparticles. We further demonstrated a polydopamine coating with controllable thickness that can be used as a platform for decorating gold nanoparticles on the surface, enabling photothermal application. We also demonstrated a polyglycerol coating, which gives excellent dispersity to SiC nanoparticles. Furthermore, a single-pot method is developed to produce mono/multifunctional polyglycerol-modified SiC nanoparticles. Using this method, CD44 proteins on cell surfaces are selectively labeled through biotin-mediated immunostaining. The methods developed in this study are fundamental for applying SiC nanoparticles to biomedical applications and should considerably accelerate the development of various SiC nanoparticles to exploit their potential applications in bioimaging and biosensing.


Assuntos
Nanopartículas Metálicas , Ouro
4.
Biophys Physicobiol ; 19: e190034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36349322

RESUMO

Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as "quantum sensors". In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122-124 (2022).

5.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925888

RESUMO

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
6.
ACS Nano ; 16(6): 9004-9018, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35675905

RESUMO

Thermal engineering at the microscale, such as the regulation and precise evaluation of the temperature within cellular environments, is a major challenge for basic biological research and biomaterials development. We engineered a polymeric nanoparticle having a fluorescent temperature sensory dye and a photothermal dye embedded in the polymer matrix, named nanoheater-thermometer (nanoHT). When nanoHT is illuminated with a near-infrared laser at 808 nm, a subcellular-sized heat spot is generated in a live cell. Fluorescence thermometry allows the temperature increment to be read out concurrently at individual heat spots. Within a few seconds of an increase in temperature by approximately 11.4 °C from the base temperature (37 °C), we observed the death of HeLa cells. The cell death was observed to be triggered from the exact local heat spot at the subcellular level under the fluorescence microscope. Furthermore, we demonstrate the application of nanoHT for the induction of muscle contraction in C2C12 myotubes by heat release. We successfully showed heat-induced contraction to occur in a limited area of a single myotube based on the alteration of protein-protein interactions related to the contraction event. These results demonstrate that even a single heat spot provided by a photothermal material can be extremely effective in altering cellular functions.


Assuntos
Temperatura Alta , Nanopartículas , Fluorescência , Corantes Fluorescentes , Células HeLa , Humanos , Polímeros
7.
Int Immunol ; 34(10): 505-518, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35759801

RESUMO

Nod-like receptor family pyrin domain-containing 3 (NLRP3) is a cytosolic innate immune receptor that senses organelle dysfunction induced by various stimuli, such as infectious, environmental, metabolic and drug stresses. Upon activation, NLRP3 forms an inflammasome with its adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1, to trigger the release of inflammatory cytokines. The development of effective anti-inflammatory drugs targeting the NLRP3 inflammasome is in high demand as its aberrant activation often causes inflammatory diseases. Here, we found that nanaomycin A (NNM-A), a quinone-based antibiotic isolated from Streptomyces, effectively inhibited NLRP3 inflammasome-mediated inflammatory responses induced by imidazoquinolines, including imiquimod. Interestingly, its epoxy derivative nanaomycin E (NNM-E) showed a comparable inhibitory effect against the NLRP3 inflammasome-induced release of interleukin (IL)-1ß and IL-18 from macrophages, with a much lower toxicity than NNM-A. NNM-E inhibited ASC oligomerization and caspase-1 cleavage, both of which are hallmarks of NLRP3 inflammasome activation. NNM-E reduced mitochondrial damage and the production of reactive oxygen species, thereby preventing the activation of the NLRP3 inflammasome. NNM-E treatment markedly alleviated psoriasis-like skin inflammation induced by imiquimod. Collectively, NNM-E inhibits NLRP3 inflammasome activation by preventing mitochondrial dysfunction with little toxicity and showed an anti-inflammatory effect in vivo. Thus, NNM-E could be a potential lead compound for developing effective and safe anti-inflammatory agents for the treatment of NLRP3 inflammasome-mediated inflammatory diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Caspase 1/metabolismo , Imiquimode/metabolismo , Imiquimode/farmacologia , Interleucina-1beta/metabolismo , Mitocôndrias/metabolismo , Naftoquinonas
8.
Cell Rep ; 38(11): 110487, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294880

RESUMO

Intracellular temperature affects a wide range of cellular functions in living organisms. However, it remains unclear whether temperature in individual animal cells is controlled autonomously as a response to fluctuations in environmental temperature. Using two distinct intracellular thermometers, we find that the intracellular temperature of steady-state Drosophila S2 cells is maintained in a manner dependent on Δ9-fatty acid desaturase DESAT1, which introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA. The DESAT1-mediated increase of intracellular temperature is caused by the enhancement of F1Fo-ATPase-dependent mitochondrial respiration, which is coupled with thermogenesis. We also reveal that F1Fo-ATPase-dependent mitochondrial respiration is potentiated by cold exposure through the remodeling of mitochondrial cristae structures via DESAT1-dependent unsaturation of mitochondrial phospholipid acyl chains. Based on these findings, we propose a cell-autonomous mechanism for intracellular temperature control during environmental temperature changes.


Assuntos
Ácidos Graxos Dessaturases , Fosfolipídeos , Adenosina Trifosfatases , Animais , Drosophila , Estearoil-CoA Dessaturase , Temperatura
9.
Biol Open ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34258610

RESUMO

We evaluated the effect of high hydrostatic pressure on mouse embryonic fibroblasts (MEFs) and mouse embryonic stem (ES) cells. Hydrostatic pressures of 15, 30, 60, and 90 MPa were applied for 10 min, and changes in gene expression were evaluated. Among genes related to mechanical stimuli, death-associated protein 3 was upregulated in MEF subjected to 90 MPa pressure; however, other genes known to be upregulated by mechanical stimuli did not change significantly. Genes related to cell differentiation did not show a large change in expression. On the other hand, genes related to pluripotency, such as Oct4 and Sox2, showed a twofold increase in expression upon application of 60 MPa hydrostatic pressure for 10 min. Although these changes did not persist after overnight culture, cells that were pressurized to 15 MPa showed an increase in pluripotency genes after overnight culture. When mouse ES cells were pressurized, they also showed an increase in the expression of pluripotency genes. These results show that hydrostatic pressure activates pluripotency genes in mammalian cells. This article has an associated First Person interview with the first author of the paper.


Assuntos
Diferenciação Celular/genética , Expressão Gênica/genética , Pressão Hidrostática/efeitos adversos , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Células-Tronco Embrionárias , Fibroblastos , Camundongos
10.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523906

RESUMO

Understanding heat dissipation processes at nanoscale during cellular thermogenesis is essential to clarify the relationships between the heat and biological processes in cells and organisms. A key parameter determining the heat flux inside a cell is the local thermal conductivity, a factor poorly investigated both experimentally and theoretically. Here, using a nanoheater/nanothermometer hybrid made of a polydopamine encapsulating a fluorescent nanodiamond, we measured the intracellular thermal conductivities of HeLa and MCF-7 cells with a spatial resolution of about 200 nm. The mean values determined in these two cell lines are both 0.11 ± 0.04 W m-1 K-1, which is significantly smaller than that of water. Bayesian analysis of the data suggests there is a variation of the thermal conductivity within a cell. These results make the biological impact of transient temperature spikes in a cell much more feasible, and suggest that cells may use heat flux for short-distance thermal signaling.

11.
Nucleic Acids Res ; 48(20): 11664-11674, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33137199

RESUMO

Cytoplasmic RIG-I-like receptor (RLR) proteins in mammalian cells recognize viral RNA and initiate an antiviral response that results in IFN-ß induction. Melanoma differentiation-associated protein 5 (MDA5) forms fibers along viral dsRNA and propagates an antiviral response via a signaling domain, the tandem CARD. The most enigmatic RLR, laboratory of genetics and physiology (LGP2), lacks the signaling domain but functions in viral sensing through cooperation with MDA5. However, it remains unclear how LGP2 coordinates fiber formation and subsequent MDA5 activation. We utilized biochemical and biophysical approaches to observe fiber formation and the conformation of MDA5. LGP2 facilitated MDA5 fiber assembly. LGP2 was incorporated into the fibers with an average inter-molecular distance of 32 nm, suggesting the formation of hetero-oligomers with MDA5. Furthermore, limited protease digestion revealed that LGP2 induces significant conformational changes on MDA5, promoting exposure of its CARDs. Although the fibers were efficiently dissociated by ATP hydrolysis, MDA5 maintained its active conformation to participate in downstream signaling. Our study demonstrated the coordinated actions of LGP2 and MDA5, where LGP2 acts as an MDA5 nucleator and requisite partner in the conversion of MDA5 to an active conformation. We revealed a mechanistic basis for LGP2-mediated regulation of MDA5 antiviral innate immune responses.


Assuntos
Helicase IFIH1 Induzida por Interferon/metabolismo , RNA Helicases/metabolismo , RNA Viral , Trifosfato de Adenosina/metabolismo , Vírus da Encefalomiocardite/genética , Células HEK293 , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/química , Helicase IFIH1 Induzida por Interferon/ultraestrutura , Interferon beta/genética , Poli I-C , Regiões Promotoras Genéticas , Conformação Proteica , Vírus de RNA/genética , RNA Viral/ultraestrutura , Transdução de Sinais
12.
J Am Chem Soc ; 142(16): 7542-7554, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32285668

RESUMO

The rotation of an object cannot be fully tracked without understanding a set of three angles, namely, roll, pitch, and yaw. Tracking these angles as a three-degrees-of-freedom (3-DoF) rotation is a fundamental measurement, facilitating, for example, attitude control of a ship, image stabilization to reduce camera shake, and self-driving cars. Until now, however, there has been no method to track 3-DoF rotation to measure nanometer-scale dynamics in biomolecules and live cells. Here we show that 3-DoF rotation of biomolecules can be visualized via nitrogen-vacancy centers in a fluorescent nanodiamond using a tomographic vector magnetometry technique. We demonstrate application of the method to three different types of biological systems. First, we tracked the rotation of a single molecule of the motor protein F1-ATPase by attaching a nanodiamond to the γ-subunit. We visualized the 3-step rotation of the motor in 3D space and, moreover, a delay of ATP binding or ADP release step in the catalytic reaction. Second, we attached a nanodiamond to a membrane protein in live cells to report on cellular membrane dynamics, showing that 3D rotational motion of the membrane protein correlates with intracellular cytoskeletal density. Last, we used the method to track nonrandom motions in the intestine of Caenorhabditis elegans. Collectively, our findings show that the method can record nanoscale 3-DoF rotation in vitro, in cells, and even in vivo. 3-DoF rotation tracking introduces a new perspective on microscopic biological samples, revealing in greater detail the functional mechanisms due to nanoscale dynamics in molecules and cells.


Assuntos
Imageamento Tridimensional/métodos , Nanoestruturas/química , Algoritmos , Rotação
13.
Biophys Rev ; 12(2): 201-203, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32172450
14.
Nanoscale ; 11(44): 21227-21248, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31663592

RESUMO

Aiming at finding new solutions for fighting glioblastoma multiforme, one of the most aggressive and lethal human cancer, here an in vitro validation of multifunctional nanovectors for drug delivery and hyperthermia therapy is proposed. Hybrid magnetic lipid nanoparticles have been fully characterized and tested on a multi-cellular complex model resembling the tumor microenvironment. Investigations of cancer therapy based on a physical approach (namely hyperthermia) and on a pharmaceutical approach (by exploiting the chemotherapeutic drug temozolomide) have been extensively carried out, by evaluating its antiproliferative and pro-apoptotic effects on 3D models of glioblastoma multiforme. A systematic study of transcytosis and endocytosis mechanisms has been moreover performed with multiple complimentary investigations, besides a detailed description of local temperature increments following hyperthermia application. Finally, an in-depth proteomic analysis corroborated the obtained findings, which can be summarized in the preparation of a versatile, multifunctional, and effective nanoplatform able to overcome the blood-brain barrier and to induce powerful anti-cancer effects on in vitro complex models.


Assuntos
Sistemas de Liberação de Medicamentos , Glioblastoma/terapia , Hipertermia Induzida , Nanopartículas de Magnetita , Modelos Biológicos , Temozolomida , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Temozolomida/química , Temozolomida/farmacologia
15.
Langmuir ; 35(25): 8357-8362, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31194560

RESUMO

Gold nanoparticles (GNPs) are promising nanomaterials for various biomedical applications owing to their remarkable optical properties and biocompatibility. However, their interfacial properties require modification for practical use in such applications. Herein, a simple method for modifying the surface of GNPs with polydopamine (PDA) to serve as a scaffold for the subsequent polymerization of hyperbranched polyglycerol (HPG) is reported. GNPs were first coated with PDA (GNP-PDA), and then ring-opening chemistry was used at this interface to modify GNP-PDA with HPG (GNP-PDA-HPG). The produced GNP-PDA-HPG shows not only excellent dispersibility in a salt-containing solution but also strong resistance to aggregation in high- and low-pH solutions, even after 10 days. Moreover, we demonstrate a one-pot method for functionalizing GNP-PDA with HPG and either COOH or trimethylammonium. Finally, we conjugated the trimethylammonium-functionalized GNP-PDA-HPG with fluorescent nanodiamonds to investigate the photothermal ability of the functional GNPs.

16.
Biophys Rev ; 11(3): 265-266, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31098927
17.
Mol Cell ; 74(6): 1205-1214.e8, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31080011

RESUMO

Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.


Assuntos
Fatores de Iniciação em Eucariotos/química , Hepacivirus/genética , Iniciação Traducional da Cadeia Peptídica , RNA Viral/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Células HEK293 , Hepacivirus/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Sítios Internos de Entrada Ribossomal , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/genética , RNA Viral/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
18.
Biophys Physicobiol ; 15: 229-234, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450272

RESUMO

Thermometers play an important role to study the biological significance of temperature. Fluorescent nanodiamonds (FNDs) with negatively-charged nitrogen-vacancy centers, a novel type of fluorescence-based temperature sensor, have physicochemical inertness, low cytotoxicity, extremely stable fluorescence, and unique magneto-optical properties that allow us to measure the temperature at the nanoscale level inside single cells. Here, we demonstrate that the thermosensing ability of FNDs is hardly influenced by environmental factors, such as pH, ion concentration, viscosity, molecular interaction, and organic solvent. This robustness renders FNDs reliable thermometers even under complex biological cellular environment. Moreover, the simple protocol developed here for measuring the absolute temperature inside a single cell using a single FND enables successful temperature measurement in a cell with an accuracy better than ±1°C.

19.
Nat Nanotechnol ; 13(10): 933-940, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30038365

RESUMO

In synthetic biology, the control of gene expression requires a multistep processing of biological signals. The key steps are sensing the environment, computing information and outputting products1. To achieve such functions, the laborious, combinational networking of enzymes and substrate-genes is required, and to resolve problems, sophisticated design automation tools have been introduced2. However, the complexity of genetic circuits remains low because it is difficult to completely avoid crosstalk between the circuits. Here, we have made an orthogonal self-contained device by integrating an actuator and sensors onto a DNA origami-based nanochip that contains an enzyme, T7 RNA polymerase (RNAP) and multiple target-gene substrates. This gene nanochip orthogonally transcribes its own genes, and the nano-layout ability of DNA origami allows us to rationally design gene expression levels by controlling the intermolecular distances between the enzyme and the target genes. We further integrated reprogrammable logic gates so that the nanochip responds to water-in-oil droplets and computes their small RNA (miRNA) profiles, which demonstrates that the nanochip can function as a gene logic-chip. Our approach to component integration on a nanochip may provide a basis for large-scale, integrated genetic circuits.


Assuntos
Computadores Moleculares , DNA/química , MicroRNAs/análise , Nanoestruturas/química , Análise de Sequência com Séries de Oligonucleotídeos , DNA/genética , RNA Polimerases Dirigidas por DNA/química , Expressão Gênica , MicroRNAs/genética , Modelos Moleculares , Biologia Sintética , Transcrição Gênica , Proteínas Virais/química
20.
Bioconjug Chem ; 29(8): 2786-2792, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29975511

RESUMO

Fluorescent nanodiamonds (FNDs) have been attracting much attention as promising therapeutic agents and probes for bioimaging and nanosensing. For their biological applications, several hydrophilizing methods to enhance FND colloidal stability have been developed to suppress their aggregation and the nonspecific adsorption to biomolecules in complex biomedical environments. However, these methods involve several complicated synthetic and purification steps, which prohibit the use of FNDs for bioapplications by biologists. In this study, we describe a simple one-pot FND hydrophilization method that comprises coating of the surface of the nanoparticles with COOH-terminated hyperbranched polyglycerol (HPG-COOH). HPG-COOH-coated FNDs (FND-HPG-COOHs) were found to exhibit excellent dispersibility under physiological conditions despite the thinness of the 5 nm HPG-COOH layer. Biotinylated FND-HPG-COOHs specifically captured avidin molecules in the absence of nonspecific protein adsorption. Moreover, we demonstrated that FND-HPG-COOHs conjugated with antibodies can be used to selectively target integrins in fixed HeLa cells. In addition, intracellular temperature changes were measured via optically detected magnetic resonance using FND-HPG-COOHs conjugated with mitochondrial localization signal peptides. Our one-pot synthetic method will encourage the broad use of FNDs among molecular and cellular biologists and pave the way for extensive biological and biomedical applications of FNDs.


Assuntos
Corantes Fluorescentes/química , Nanodiamantes/química , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA