Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Mol Biol Rep ; 51(1): 660, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750264

RESUMO

BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.


Assuntos
Cádmio , Inflamação , Estresse Oxidativo , Piroptose , Fumarato de Quetiapina , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Cádmio/toxicidade , Fumarato de Quetiapina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
2.
BMC Genomics ; 25(1): 469, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745121

RESUMO

Carotenoid cleavage oxygenases (CCOs) enzymes play a vital role in plant growth and development through the synthesis of apocarotenoids and their derivative. These chemicals are necessary for flower and fruit coloration, as well as the manufacture of plant hormones such as abscisic acid (ABA) and strigolactones, which control a variety of physiological processes. The CCOs gene family has not been characterized in Arachis hypogaea. Genome mining of A. hypogaea identifies 24 AhCCO gene members. The AhCCO gene family was divided into two subgroups based on the recent study of the Arabidopsis thaliana CCO gene family classification system. Twenty-three AhCCO genes, constituting 95.8% of the total, were regulated by 29 miRNAs, underscoring the significance of microRNAs (miRNAs) in governing gene expression in peanuts. AhCCD19 is the only gene that lacks a miRNA target site. The physicochemical characteristics of CCO genes and their molecular weights and isoelectric points were studied further. The genes were then characterized regarding chromosomal distribution, structure, and promoter cis-elements. Light, stress development, drought stress, and hormone responsiveness were discovered to be associated with AhCCO genes, which can be utilized in developing more resilient crops. The investigation also showed the cellular location of the encoded proteins and discovered that the peanut carotenoid oxygenase gene family's expansion was most likely the result of tandem, segmental, and whole-genome duplication events. The localization expresses the abundance of genes mostly in the cytoplasm and chloroplast. Expression analysis shows that AhCCD7 and AhCCD14 genes show the maximum expression in the apical meristem, lateral leaf, and pentafoliate leaf development, while AhNCED9 and AhNCED13 express in response to Aspergillus flavus resistance. This knowledge throws light on the evolutionary history of the AhCCO gene family and may help researchers better understand the molecular processes behind gene duplication occurrences in plants. An integrated synteny study was used to find orthologous carotenoid oxygenase genes in A. hypogaea, whereas Arabidopsis thaliana and Beta vulgaris were used as references for the functional characterization of peanut CCO genes. These studies provide a foundation for future research on the regulation and functions of this gene family. This information provides valuable insights into the genetic regulation of AhCCO genes. This technology could create molecular markers for breeding programs to develop new peanut lines.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oxigenases , Estresse Fisiológico , Arachis/genética , Arachis/enzimologia , Estresse Fisiológico/genética , Oxigenases/genética , Oxigenases/metabolismo , Carotenoides/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Filogenia , Genoma de Planta , Regiões Promotoras Genéticas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Gen Med ; 17: 1297-1310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590998

RESUMO

Background: Fungal infections, especially those caused have emerged as a significant medical concern over the past three decades, particularly among immunocompromised patients. However, recent studies have highlighted the increasing prevalence of fungal infections resembling yeast other than Candida, such as trichosporonosis, especially among immunosuppressed individuals worldwide. Trichosporon has been identified as a significant contributor to superficial and invasive infections. Invasive trichosporonosis, primarily affecting immunocompromised patients, poses a significant threat with high mortality rates. Purpose: The current study aimed to explore the clinical epidemiology of Trichosporon spp at King Abdulaziz University Hospital (KAUH) in Saudi Arabia. Methods: This retrospective study aimed to assess the clinical epidemiology of Trichosporon spp. infections in microbiology cultures obtained from KAUH in Saudi Arabia. The study analyzed data from patients over a five-year period, focusing on demographic, clinical, and microbiological characteristics. Results: This study encompassed 21 participants, categorized into four distinct age groups. Moreover, this study indicated T. asahii as the predominant species isolated, accounting for 90.5% of infections, followed by T. mucoides (9.5%). ICU hospitalization, diabetes mellitus, taking immunosuppressive drugs, and antifungal drugs, and the use of invasive medical equipment were identified as prominent risk factors for trichosporonosis. Urinary tract infections were the most common clinical presentation, particularly among male and elderly patients. Mortality rates were high, especially among older individuals. Conclusion: This study contributes valuable epidemiological insights into trichosporonosis, highlighting the need for enhanced surveillance and preventive strategies in healthcare settings. Further research is warranted to optimize treatment approaches and infection control measures, ultimately reducing the burden of Trichosporon infections on patient outcomes.

4.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502682

RESUMO

The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. Here, we used all-atom molecular dynamics (MD) simulations to comprehend the folding, dynamics and conformational stability of MNK variants, including the wild type (WT) and three mutants (H677R, V696M and H677R/V696M). The deleterious and destabilizing nature of MNK mutants were predicted using different prediction tools. Results predicted that mutations modulate the stability, flexibility and function of MNK. The effect of mutations on the conformational stability and dynamics of MNK was next studied through the free-energy landscape (FEL), hydrogen-bonds and secondary structure changes. The FEL results show that the mutations interfere with various conformational transitions in both WT and mutants, exposing the structural underpinnings of protein destabilization and unfolding brought on by mutation. We discover that, when compared to the other two mutations, V696M and H677R/V696M, H677R has the most harmful effects. These findings have a strong correlation with published experimental studies that demonstrate how these mutations disrupt MNK activity. Hence, this computational study describes the structural details to unravel the mutant effects at the atomistic resolution and has implications for understanding the GNE's physiological and pathological role.Communicated by Ramaswamy H. Sarma.

5.
BMC Plant Biol ; 24(1): 221, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539080

RESUMO

Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activities of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial strains enhanced plant growth by reducing oxidative stress caused by metals.


Assuntos
Loratadina/análogos & derivados , Metais Pesados , Poluentes do Solo , Spinacia oleracea , Antioxidantes/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo , Bactérias/metabolismo , Solo/química , Plantas/metabolismo , Nitrogênio/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
6.
Drug Chem Toxicol ; : 1-12, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508707

RESUMO

Methotrexate (MTX) is an anti-folate chemotherapeutic commonly used to treat cancer and autoimmune diseases. Despite its widespread clinical use, MTX has been linked to serious neurotoxicity side effects. Vinpocetine (VNP) has been widely used clinically to treat many neurological conditions. This study was conducted to study the potential neuroprotective effects of VNP against MTX hippocampal intoxication in rats. Thirty-two rats were randomly allocated into 4 groups: (I) control (Vehicle); (II) VNP-treated group (20 mg/kg/day, p.o); (III) MTX-control (20 mg/kg/once, i.p.) group; and (IV) the VNP + MTX group. VNP was administered orally for 10 days, during which MTX was given intraperitoneally once at the end of day 5. Our data indicated that VNP administration significantly improved MTX-induced neuronal cell death, odema, vacuolation and degeneration. VNP attenuated oxidative injury mediated by significant upregulation of the Nrf2, HO-1, and GCLC genes, while the Keap-1 mRNA expression downregulated. Moreover, VNP suppressed cytokines release mediated by increasing IκB expression level while it caused a marked downregulation in NF-κB and AP-1 (C-FOS and C-JUN) levels. Additionally, VNP attenuated apoptosis by reducing hippocampal Bax levels while increasing Bcl2 levels in MTX-intoxicated rats. In conclusion, our results suggested that VNP significantly attenuated MTX hippocampal intoxication by regulating Keap-1/Nrf2, NF-κB/AP-1, and apoptosis signaling in these effects.

7.
Mol Biol Rep ; 51(1): 429, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517566

RESUMO

Drought poses a significant challenge to wheat production globally, leading to substantial yield losses and affecting various agronomic and physiological traits. The genetic route offers potential solutions to improve water-use efficiency (WUE) in wheat and mitigate the negative impacts of drought stress. Breeding for drought tolerance involves selecting desirable plants such as efficient water usage, deep root systems, delayed senescence, and late wilting point. Biomarkers, automated and high-throughput techniques, and QTL genes are crucial in enhancing breeding strategies and developing wheat varieties with improved resilience to water scarcity. Moreover, the role of root system architecture (RSA) in water-use efficiency is vital, as roots play a key role in nutrient and water uptake. Genetic engineering techniques offer promising avenues to introduce desirable RSA traits in wheat to enhance drought tolerance. These technologies enable targeted modifications in DNA sequences, facilitating the development of drought-tolerant wheat germplasm. The article highlighted the techniques that could play a role in mitigating drought stress in wheat.


Assuntos
Triticum , Água , Melhoramento Vegetal , Fenótipo , Secas
8.
ACS Omega ; 9(2): 2204-2219, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250414

RESUMO

Mycobacterium tuberculosis is responsible for tuberculosis (TB) all over the world. Despite tremendous advancements in biomedical research, new treatment approaches, and preventive measures, TB incidence rates continue to ascend. The herbaceous plant Acalypha indica, also known as Indian Nettle, belongs to the Euphorbiaceae family and is known as one of the most important sources of medicines and pharmaceuticals for the medical therapy for a range of ailments. However, the precise molecular mechanism of its therapeutic action is still unknown. In this study, an integrated network pharmacology approach was employed to explore the potential mechanism of A. indica phytochemicals against TB. The active chemical components of A. indica were collected from two independent databases and published sources, whereas SwissTargetPrediction was used to identify the target genes of these phytochemicals. GeneCards and DisGeNET databases were employed to retrieve tuberculosis-related genes and variants. Following the evaluation of overlapped genes, gene enrichment analysis and PPI network analysis were performed using the DAVID and STRING databases, respectively. Later, to identify the potential target(s) for the disease, molecular docking was performed. A. indica revealed 9 active components with 259 potential therapeutic targets; TB attributed 694 intersecting genes from the two data sets; and both TB and A. indica overlapped 44 potential targets. The in-depth analysis based on the degree revealed that AKT1 and EGFR formed the foundation of the PPI network. Moreover, docking analysis followed by molecular dynamics simulations revealed that phytosterol and stigmasterol have higher binding affinities to AKT1 and EGFR to suppress tuberculosis. This study provides a convincing proof that A. indica can be exploited to target TB after experimental endorsement; further, it lays the framework for more experimental research on A. indica's anti-TB activity.

9.
Heliyon ; 10(1): e23553, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187226

RESUMO

Background: It is well-established that specific herbal plants contain natural active ingredients that have demonstrated anti-cancer potential. Therefore, they are considered highly beneficial as a potential adjuvant, alternative or complementary agent in anti-cancer therapy. However, the low chemical stability and limited bioavailability of 3, 3'-Diindolylmethane (DIM), a plant-derived compound used in clinical settings, limit its therapeutic applications. To overcome this challenge, researchers have focused on developing innovative approaches to improve DIM's biological activity, such as utilizing nanoformulations. Here, we investigated the potential benefits of coating DIM nanoparticles (DIM-NPs) with PEG/chitosan in the treatment of breast cancer. Our results demonstrate the molecular mechanism underlying the activity of DIM-NPs, highlighting their potential as an effective therapeutic strategy for breast cancer treatment. Methods: DIM-PLGA-PEG/chitosan NPs were synthesised and characterised using dynamic light scattering (DLS) and evaluated the impact of these NPs on two breast cancer cell models. Results: DIM-NPs had an average diameter of 102.3 nm and a PDI of 0.182. When treated with DIM-NPs for 48 h, both MCF7 and MDA-MB-231 cells displayed cytotoxicity at a concentration of 6.25 g/mL compared to untreated cells. Furthermore, in MDA-MB-231 cells, treatment with 2.5 µg/mL of DIM-NPs resulted in a significant decrease in cell migration, propagation, and angiogenesis which was further enhanced at 10 µg/mL. In chicken embryos, treatment with 5 µg/mL of DIM-NPs on day 2 led to a significant reduction in angiogenesis. Furthermore, this treatment induced cell death through a regulatory pathway involving the upregulation of Bax and p53, as well as the downregulation of Bcl-2. These results were supported by in-silico analysis of DIM's binding affinity to key proteins involved in this pathway, namely Bax, Bcl-2, and p53. Conclusion: Our findings show that DIM-NPs induces apoptosis, inhibit migration, and reduce angiogenesis in breast cancer. However, further research using a preclinical cancer model may be necessary to determine the pharmacokinetics of DIM-NPs and ensure their safety and efficacy in vivo.

10.
Immunopharmacol Immunotoxicol ; 46(1): 11-19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493389

RESUMO

OBJECTIVES: Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS: VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS: VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1ß levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION: Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.


Assuntos
Metotrexato , NF-kappa B , Alcaloides de Vinca , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Metotrexato/toxicidade , Estresse Oxidativo , Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Janus Quinase 1/metabolismo , Proteínas Quinases/metabolismo
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1405-1419, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37725153

RESUMO

Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.


Assuntos
Lesão Pulmonar Aguda , Fosfatidilinositol 3-Quinases , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , NF-kappa B/metabolismo , Pulmão , Lesão Pulmonar Aguda/metabolismo , Lipopolissacarídeos/farmacologia
13.
J Biomol Struct Dyn ; : 1-13, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126188

RESUMO

Abnormal aggregation and amyloid inclusions of TAR DNA-binding protein 43 (TDP-43) and α-Synuclein (α-Syn) are frequently co-observed in amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Several reports showed TDP-43 C-terminal domain (CTD) and α-Syn interact with each other and the aggregates of these two proteins colocalized together in different cellular and animal models. Molecular dynamics simulation was conducted to elucidate the stability of the TDP-43 and Syn complex structure. The interfacial mutations in protein complexes changes the stability and binding affinity of the protein that may cause diseases. Here, we have utilized the computational saturation mutagenesis approach including structure-based stability and binding energy calculations to compute the systemic effects of missense mutations of TDP-43 CTD and α-Syn on protein stability and binding affinity. Most of the interfacial mutations of CTD and α-Syn were found to destabilize the protein and reduced the protein binding affinity. The results thus shed light on the functional consequences of missense mutations observed in TDP-43 associated proteinopathies and may provide the mechanisms of co-morbidities involving these two proteins.Communicated by Ramaswamy H. Sarma.

14.
Heliyon ; 9(11): e21824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034707

RESUMO

These days carbon dots have been developed for multiple biomedical applications. In the current study, the transfection potential of synthesized carbon dots from single biopolymers such as chitosan, PEI-2kDa, and PEI-25kDa (CS-CDs, PEI2-CDs, and PEI25-CDs) and by combining two biopolymers (CP2-CDs and CP25-CDs) through a bottom-up approach have been investigated. The characterization studies revealed successful synthesis of fluorescent, positively charged carbon dots <20 nm in size. Synthesized carbon dots formed a stable complex with plasmid DNA (EGFP-N1) and miRNA-153 that protected DNA/miRNA from serum-induced degradation. In-vitro cytotoxicity analysis revealed minimal cytotoxicity in cancer cell lines (A549 and MDA-MB-231). In-vitro transfection of EGFP-N1 plasmid DNA with PEI2-CDs, PEI25-CDs and CP25-CDs demonstrated that these CDs could strongly transfect A549 and MDA-MB-231 cells. The highest EGFP-N1 plasmid transfection efficiency was observed with PEI2-CDs at a weight ratio of 32:1. PEI25-CDs polyplex showed maximum transfection at a weight ratio of 8:1 in A549 at a weight ratio of 16:1 in MDA-MB-231 cells. CP25-CDs exhibited the highest transfection at a weight ratio of 16:1 in both cell lines. The in-vitro transfection of target miRNA, i.e., miR-153 in A549 and MDA-MB-231 cells with PEI2-CDs, PEI25-CDs, and CP25-CDs suggested successful transfer of miR-153 into cells which induced significant cell death in both cell lines. Importantly, CS-CDs and CP2-CDs could be tolerated by cells up to 200 µg/mL concentration, while PEI2-CDs, PEI25-CDs, and CP25-CDs showed non-cytotoxic behavior at low concentrations (25 µg/mL). Together, these results suggest that a combination of carbon dots synthesized from chitosan and PEI (CP25-CDs) could be a novel vector for transfection nucleic acids that can be utilized in cancer therapy.

17.
Biomed Pharmacother ; 165: 115236, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531780

RESUMO

trans-Anethole a valuable compound derived from star anise widely used by ethnic tribals to manage numerous human diseases. In this study antiproliferative activities of trans-Anethole towards human liver cancer (HepG2), cervical cancer (HeLa) and breast cancer (MCF-7) cells were explored. trans-Anethole showed free radical scavenging potential as assessed by DNA nicking assay. trans-Anethole exhibited strong antiproliferative potential towards HepG2 cells compared to other cell lines. trans-Anethole strongly induced apoptosis in HepG2 cells by significantly upregulating the protein expressions of p53, Caspase-3 and Caspase-9 were assessed by western blotting analysis which highlighted apoptosis-inducing capacity of trans-Anethole against HepG2 cells. Rt-qPCR analysis revealed that trans- Anethole upregulated p53, caspase - 3 and - 9 in comparison to untreated HepG2 cancer cells. Moreover, trans-Anethole provoked the generation of ROS and disruption of MMP. Our research suggests that trans-Anethole may have a significant anticancer therapeutic potential for treating liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Células HeLa , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial
19.
Toxicol Mech Methods ; 33(8): 675-687, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37403423

RESUMO

Cadmium (Cd) is one of the most hazardous metals to the environment and human health. Neurotoxicity is of the most serious hazards caused by Cd. Mirtazapine (MZP) is a central presynaptic α2 receptor antagonist used effectively in treating several neurological disorders. This study investigated the anti-inflammatory and antioxidant activity of MZP against Cd-induced neurotoxicity. In this study, rats were randomly divided into five groups: control, MZP (30 mg/kg), Cd (6.5 mg/kg/day; i.p), Cd + MZP (15 mg/kg), and Cd + MZP (30 mg/kg). Histopathological examination, oxidative stress biomarkers, inflammatory cytokines, and the impact of Nrf2 and NF-κB/TLR4 signals were assessed in our study. Compared to Cd control rats, MZP attenuated histological abrasions in the cerebral cortex and CA1 and CA3 regions of the hippocampus as well as the dentate gyrus. MZP attenuated oxidative injury by upregulating Nrf2. In addition, MZP suppressed the inflammatory response by decreasing TNF-α, IL-1ß, and IL-6 mediated by downregulating TLR4 and NF-κB. It is noteworthy that MZP's neuroprotective actions were dose-dependent. Collectively, MZP is a promising therapeutic strategy for attenuating Cd-induced neurotoxicity by regulating Nrf2, and NF-κB/TLR4 signals, pending further study in clinical settings.


Assuntos
Cádmio , NF-kappa B , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Cádmio/toxicidade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Mirtazapina/uso terapêutico , Mirtazapina/farmacologia , Estresse Oxidativo
20.
Artif Cells Nanomed Biotechnol ; 51(1): 361-370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37524306

RESUMO

BACKGROUND: Curcumin has been used in the treatment of several diseases; however, its low pharmacologic profile reduces its therapeutic use. Towards improving its biological activity, nanoformulations have emerged. Thus, we aimed to determine whether curcumin nanoparticles (Cur-NPs) coated with PEG/chitosan improve the treatment of liver cancer (LC) cells and underpin the molecular mechanisms underlying their anti-cancer activity. METHODS: Cur-NPs were synthesised in the form of Cur-PLGA-PEG/chitosan NPs. The effect of Cur-NPs was assessed in HepG2 and Huh 7 LC cells and THLE-2 normal liver cells. RESULTS: The size of synthesised Cur-NPS was determined in the standard range of 141.2 ± 47.5 nm. Compared to THLE-2 cells, LC cells treated with Cur-NPs exerted cytotoxicity at 6.25 µg/mL after 48h. Treatment of HepG-2 cells with 2.5 µg/mL of Cur-NPs inhibited cell migration and this inhibition was augmented at 10 µg/mL (p < 0.001). Treatment of chicken embryo with 5 µg/mL Cur-NPs reduced angiogenesis (p < 0.001) of 4-day-old embryos. The nanoformulation upregulated Bax and p53 and downregulated Bcl-2 in a concentration-dependent manner and subsequently induce apoptosis in HepG-2 cells. CONCLUSION: Treatment of LC cells with Cur-NPs decreased cell proliferation, migration, and angiogenesis, and induced cell death by promoting the proapoptotic pathway.


Curcumin nanoparticles (Cur-NPs) increase the anticancer efficiency of Curcumin against liver cancer cells.Cur-NPs induce apoptotic cell death of Liver cancer cells.Cur-NPs have ant-angiogenesis and metastasis effect.


Assuntos
Quitosana , Curcumina , Neoplasias Hepáticas , Nanopartículas , Embrião de Galinha , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Linhagem Celular Tumoral , Quitosana/farmacologia , Apoptose , Neoplasias Hepáticas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA