Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(2): e1008537, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524022

RESUMO

While large datasets of HIV-1 sequences are increasingly being generated, many studies rely on a single gene or fragment of the genome and few comparative studies across genes have been done. We performed genome-based and gene-specific Bayesian phylogenetic analyses to investigate how certain factors impact estimates of the infection dates in an acute HIV-1 infection cohort, RV217. In this cohort, HIV-1 diagnosis corresponded to the first RNA positive test and occurred a median of four days after the last negative test, allowing us to compare timing estimates using BEAST to a narrow window of infection. We analyzed HIV-1 sequences sampled one week, one month and six months after HIV-1 diagnosis in 39 individuals. We found that shared diversity and temporal signal was limited in acute infection, and insufficient to allow timing inferences in the shortest HIV-1 genes, thus dated phylogenies were primarily analyzed for env, gag, pol and near full-length genomes. There was no one best-fitting model across participants and genes, though relaxed molecular clocks (73% of best-fitting models) and the Bayesian skyline (49%) tended to be favored. For infections with single founders, the infection date was estimated to be around one week pre-diagnosis for env (IQR: 3-9 days) and gag (IQR: 5-9 days), whilst the genome placed it at a median of 10 days (IQR: 4-19). Multiply-founded infections proved problematic to date. Our ability to compare timing inferences to precise estimates of HIV-1 infection (within a week) highlights that molecular dating methods can be applied to within-host datasets from early infection. Nonetheless, our results also suggest caution when using uniform clock and population models or short genes with limited information content.


Assuntos
Infecções por HIV/epidemiologia , HIV-1 , Modelos Biológicos , Software , Teorema de Bayes , Estudos de Coortes , Biologia Computacional , Feminino , Genes Virais , Variação Genética , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Funções Verossimilhança , Estudos Longitudinais , Masculino , Modelos Genéticos , Filogenia , Fatores de Tempo
2.
PLoS Pathog ; 16(2): e1008179, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32027734

RESUMO

Most HIV-1 infected individuals do not know their infection dates. Precise infection timing is crucial information for studies that document transmission networks or drug levels at infection. To improve infection timing, we used the prospective RV217 cohort where the window when plasma viremia becomes detectable is narrow: the last negative visit occurred a median of four days before the first detectable HIV-1 viremia with an RNA test, referred below as diagnosis. We sequenced 1,280 HIV-1 genomes from 39 participants at a median of 4, 32 and 170 days post-diagnosis. HIV-1 infections were dated by using sequence-based methods and a viral load regression method. Bayesian coalescent and viral load regression estimated that infections occurred a median of 6 days prior to diagnosis (IQR: 9-3 and 11-4 days prior, respectively). Poisson-Fitter, which analyzes the distribution of hamming distances among sequences, estimated a median of 7 days prior to diagnosis (IQR: 15-4 days) based on sequences sampled 4 days post-diagnosis, but it did not yield plausible results using sequences sampled at 32 days. Fourteen participants reported a high-risk exposure event at a median of 8 days prior to diagnosis (IQR: 12 to 6 days prior). These different methods concurred that HIV-1 infection occurred about a week before detectable viremia, corresponding to 20 days (IQR: 34-15 days) before peak viral load. Together, our methods comparison helps define a framework for future dating studies in early HIV-1 infection.


Assuntos
Genoma Viral , Infecções por HIV/diagnóstico , HIV-1/metabolismo , Técnicas de Diagnóstico Molecular , Carga Viral , Viremia/diagnóstico , Adulto , África Oriental , Feminino , Infecções por HIV/genética , HIV-1/genética , Humanos , Masculino , Estudos Prospectivos , Tailândia , Fatores de Tempo , Viremia/genética
3.
Cells ; 8(8)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443253

RESUMO

HIV-1 disseminates to a broad range of tissue compartments during acute HIV-1 infection (AHI). The central nervous system (CNS) can serve as an early and persistent site of viral replication, which poses a potential challenge for HIV-1 remission strategies that target the HIV reservoir. CNS compartmentalization is a key feature of HIV-1 neuropathogenesis. Thus far, the timing of how early CNS compartmentalization develops after infection is unknown. We examined whether HIV-1 transmitted/founder (T/F) viruses differ between CNS and blood during AHI using single-genome sequencing of envelope gene and further examined subregions in pol and env using next-generation sequencing in paired plasma and cerebrospinal fluid (CSF) from 18 individuals. Different proportions of mostly minor variants were found in six of the eight multiple T/F-infected individuals, indicating enrichment of some variants in CSF that may lead to significant compartmentalization in the later stages of infection. This study provides evidence for the first time that HIV-1 compartmentalization in the CNS can occur within days of HIV-1 exposure in multiple T/F infections. Further understanding of factors that determine enrichment of T/F variants in the CNS, as well as potential long-term implications of these findings for persistence of HIV-1 reservoirs and neurological impairment in HIV, is needed.


Assuntos
Genes env/genética , Genes pol/genética , Infecções por HIV , HIV-1 , RNA Viral/sangue , Adulto , Feminino , Infecções por HIV/sangue , Infecções por HIV/líquido cefalorraquidiano , HIV-1/genética , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Análise de Sequência de RNA , Replicação Viral , Adulto Jovem
4.
Biomol Detect Quantif ; 17: 100080, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30923677

RESUMO

The analysis of HIV-1 sequences has helped understand the viral molecular epidemiology, monitor the development of antiretroviral drug resistance, and design candidate vaccines. The introduction of single genome amplification (SGA) has been a major advancement in the field, allowing for the characterization of multiple sequences per patient while preserving linkage among polymorphisms in the same viral genome copy. Sequencing of SGA amplicons is performed by capillary Sanger sequencing, which presents low throughput, requires a high amount of template, and is highly sensitive to template/primer mismatching. In order to meet the increasing demand for HIV-1 SGA amplicon sequencing, we have developed a platform based on benchtop next-generation sequencing (NGS) (IonTorrent) accompanied by a bioinformatics pipeline capable of running on computer resources commonly available at research laboratories. During assay validation, the NGS-based sequencing of 10 HIV-1 env SGA amplicons was fully concordant with Sanger sequencing. The field test was conducted on plasma samples from 10 US Navy and Marine service members with recent HIV-1 infection (sampling interval: 2005-2010; plasma viral load: 5,884-194,984 copies/ml). The NGS analysis of 101 SGA amplicons (median: 10 amplicons/individual) showed within-individual viral sequence profiles expected in individuals at this disease stage, including individuals with highly homogeneous quasispecies, individuals with two highly homogeneous viral lineages, and individuals with heterogeneous viral populations. In a scalability assessment using the Ion Chef automated system, 41/43 tested env SGA amplicons (95%) multiplexed on a single Ion 318 chip showed consistent gene-wide coverage >50×. With lower sample requirements and higher throughput, this approach is suitable to support the increasing demand for high-quality and cost-effective HIV-1 sequences in fields such as molecular epidemiology, and development of preventive and therapeutic strategies.

6.
PLoS Pathog ; 13(7): e1006510, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28759651

RESUMO

In order to inform the rational design of HIV-1 preventive and cure interventions it is critical to understand the events occurring during acute HIV-1 infection (AHI). Using viral deep sequencing on six participants from the early capture acute infection RV217 cohort, we have studied HIV-1 evolution in plasma collected twice weekly during the first weeks following the advent of viremia. The analysis of infections established by multiple transmitted/founder (T/F) viruses revealed novel viral profiles that included: a) the low-level persistence of minor T/F variants, b) the rapid replacement of the major T/F by a minor T/F, and c) an initial expansion of the minor T/F followed by a quick collapse of the same minor T/F to low frequency. In most participants, cytotoxic T-lymphocyte (CTL) escape was first detected at the end of peak viremia downslope, proceeded at higher rates than previously measured in HIV-1 infection, and usually occurred through the exploration of multiple mutational pathways within an epitope. The rapid emergence of CTL escape variants suggests a strong and early CTL response. Minor T/F viral strains can contribute to rapid and varied profiles of HIV-1 quasispecies evolution during AHI. Overall, our results demonstrate that early, deep, and frequent sampling is needed to investigate viral/host interaction during AHI, which could help identify prerequisites for prevention and cure of HIV-1 infection.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Adolescente , Adulto , Estudos de Coortes , Feminino , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/classificação , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Evasão da Resposta Imune , Masculino , Pessoa de Meia-Idade , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Adulto Jovem
7.
J Virol Methods ; 205: 7-16, 2014 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-24797459

RESUMO

The characterization of mixed HIV-1 populations is a key question in clinical and basic research settings. This can be achieved through targeted deep sequencing (TDS), where next-generation sequencing is used to examine in depth a sub-genomic region of interest. This study explores the suitability of IonTorrent PGM(LifeTechnologies) for the TDS-based analysis of HIV-1 evolution. Using laboratory reagents and primary specimens sampled at pre-peak viremia the error rates from misincorporation and in vitro recombination were <0.5%. The sequencing error rate was 2- to 3-fold higher in/around homopolymeric tracts, and could be discerned from true polymorphism using bidirectional sequencing. The limit of detection of complex variants was further lowered by using haplotyping. The application of this system was illustrated on primary samples from an individual infected with HIV-1 followed from pre-peak viremia through six months post-acquisition. TDS provided an augmented view of the extent of genetic diversity, the covariation among polymorphisms, the evolutionary pathways, and the boundaries of the mutational space explored by the viral swarm. Based on its performance, the system can be applied for the characterization of minor viral variants in support of studies of viral evolution, which can inform the rational design of the next generation of vaccines and therapeutics.


Assuntos
Evolução Molecular , Variação Genética , Infecções por HIV/virologia , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequência de Aminoácidos , Sequência de Bases , Feminino , Biblioteca Gênica , Humanos , Estudos Longitudinais , Mutação , Recombinação Genética , Alinhamento de Sequência , Análise de Sequência de DNA , Viremia
8.
AIDS Res Hum Retroviruses ; 29(10): 1361-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23809062

RESUMO

The advent of next generation sequencing technologies is providing new insight into HIV-1 diversity and evolution, which has created the need for bioinformatics tools that could be applied to the characterization of viral quasispecies. Here we present Nautilus, a bioinformatics package for the analysis of HIV-1 targeted deep sequencing data. The DeepHaplo module determines the nucleotide base frequency and read depth at each position and computes the haplotype frequencies based on the linkage among polymorphisms in the same next generation sequence read. The Motifs module computes the frequency of the variants in the setting of their sequence context and mapping orientation, which allows for the validation of polymorphisms and haplotypes when strand bias is suspected. Both modules are accessed through a user-friendly GUI, which runs on Mac OS X (version 10.7.4 or later), and are based on Python, JAVA, and R scripts. Nautilus is available from www.hivresearch.org/research.php?ServiceID=5&SubServiceID=6 .


Assuntos
Biologia Computacional/métodos , Variação Genética , HIV-1/classificação , HIV-1/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Frequência do Gene , Infecções por HIV/virologia , HIV-1/química , Humanos , Internet , Software
9.
Genome Announc ; 1(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23469330

RESUMO

The number of inflammatory gastroenteritis outbreaks due to the food-borne pathogen Vibrio parahaemolyticus is rising sharply worldwide and in the United States in particular. Here we report the complete, annotated genome sequence of the prepandemic V. parahaemolyticus strain BB22OP and make some initial comparisons to the complete genome sequence for pandemic strain RIMD2210633.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA