Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Br J Dermatol ; 187(6): 948-961, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35986704

RESUMO

BACKGROUND: Bazex-Dupré-Christol syndrome (BDCS; MIM301845) is a rare X-linked dominant genodermatosis characterized by follicular atrophoderma, congenital hypotrichosis and multiple basal cell carcinomas (BCCs). Previous studies have linked BDCS to an 11·4-Mb interval on chromosome Xq25-q27.1. However, the genetic mechanism of BDCS remains an open question. OBJECTIVES: To investigate the genetic aetiology and molecular mechanisms underlying BDCS. METHODS: We ascertained multiple individuals from eight unrelated families affected with BDCS (F1-F8). Whole-exome (F1 and F2) and genome sequencing (F3) were performed to identify putative disease-causing variants within the linkage region. Array comparative genomic hybridization and quantitative polymerase chain reaction (PCR) were used to explore copy number variations, followed by long-range gap PCR and Sanger sequencing to amplify the duplication junctions and to define the head-tail junctions. Hi-C was performed on dermal fibroblasts from two affected individuals with BDCS and one control. Public datasets and tools were used to identify regulatory elements and transcription factor binding sites within the minimal duplicated region. Immunofluorescence was performed in hair follicles, BCCs and trichoepitheliomas from patients with BDCS and sporadic BCCs. The ACTRT1 variant c.547dup (p.Met183Asnfs*17), previously proposed to cause BDCS, was evaluated with t allele frequency calculator. RESULTS: In eight families with BDCS, we identified overlapping 18-135-kb duplications (six inherited and two de novo) at Xq26.1, flanked by ARHGAP36 and IGSF1. Hi-C showed that the duplications did not affect the topologically associated domain, but may alter the interactions between flanking genes and putative enhancers located in the minimal duplicated region. We detected ARHGAP36 expression near the control hair follicular stem cell compartment, and found increased ARHGAP36 levels in hair follicles in telogen, in BCCs and in trichoepitheliomas from patients with BDCS. ARHGAP36 was also detected in sporadic BCCs from individuals without BDCS. Our modelling showed the predicted maximum tolerated minor allele frequency of ACTRT1 variants in control populations to be orders of magnitude higher than expected for a high-penetrant ultra-rare disorder, suggesting loss of function of ACTRT1 variants to be an unlikely cause for BDCS. CONCLUSIONS: Noncoding Xq26.1 duplications cause BDCS. The BDCS duplications most likely lead to dysregulation of ARHGAP36. ARHGAP36 is a potential therapeutic target for both inherited and sporadic BCCs. What is already known about this topic? Bazex-Dupré-Christol syndrome (BDCS) is a rare X-linked basal cell carcinoma susceptibility syndrome linked to an 11·4-Mb interval on chromosome Xq25-q27.1. Loss-of-function variants in ACTRT1 and its regulatory elements were suggested to cause BDCS. What does this study add? BDCS is caused by small tandem noncoding intergenic duplications at chromosome Xq26.1. The Xq26.1 BDCS duplications likely dysregulate ARHGAP36, the flanking centromeric gene. ACTRT1 loss-of-function variants are unlikely to cause BDCS. What is the translational message? This study provides the basis for accurate genetic testing for BDCS, which will aid precise diagnosis and appropriate surveillance and clinical management. ARHGAP36 may be a novel therapeutic target for all forms of sporadic basal cell carcinomas.


Assuntos
Carcinoma Basocelular , Hipotricose , Humanos , Carcinoma Basocelular/patologia , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Células Germinativas/patologia , Hipotricose/genética , Hipotricose/patologia , Proteínas dos Microfilamentos
2.
J Invest Dermatol ; 141(9): 2178-2188.e6, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33984347

RESUMO

Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Células Epidérmicas/metabolismo , Espermina/metabolismo , Adenosilmetionina Descarboxilase/genética , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células Epidérmicas/patologia , Técnicas de Silenciamento de Genes , Humanos , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos , Poliaminas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
3.
J Invest Dermatol ; 141(6): 1553-1563.e3, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33385398

RESUMO

The AHR is an environmental sensor and transcription factor activated by a variety of man-made and natural ligands, which has recently emerged as a critical regulator of homeostasis at barrier organs such as the skin. Activation of the AHR pathway downmodulates skin inflammatory responses in animal models and psoriasis clinical samples. In this study, we identify CYP1A1 enzymatic activity as a critical regulator of beneficial AHR signaling in the context of skin inflammation. Mice constitutively expressing Cyp1a1 displayed increased CYP1A1 enzymatic activity in the skin, which resulted in exacerbated immune cell activation and skin pathology, mirroring that observed in Ahr-deficient mice. Inhibition of CYP1A1 enzymatic activity ameliorated the skin immunopathology by restoring beneficial AHR signaling. Importantly, patients with psoriasis displayed reduced activation of the AHR pathway and increased CYP1A1 enzymatic activity compared with healthy donors, suggesting that dysregulation of the AHR/CYP1A1 axis may play a role in inflammatory skin disease. Thus, modulation of CYP1A1 activity may represent a promising alternative strategy to harness the anti-inflammatory effect exerted by activation of the AHR pathway in the skin.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Psoríase/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/genética , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Psoríase/genética , Psoríase/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Pele/imunologia , Pele/patologia , Adulto Jovem
4.
Exp Dermatol ; 29(8): 687-698, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32654325

RESUMO

Vascular endothelial growth factor-A (VEGF-A), the main angiogenic mediator, plays a critical role in the pathogenesis of several inflammatory immune-mediated diseases, including psoriasis. Even though anti-angiogenic therapies, such as VEGF inhibitors, are licensed for the treatment of various cancers and eye disease, VEGF-targeting interventions are not part of current psoriasis therapy. In this viewpoint essay, we argue that the existing preclinical research evidence on the role of VEGF-A in the pathogenesis of psoriasis as well as clinical observations in patients who have experienced psoriasis remission during oncological anti-VEGF-A therapy strongly suggests to systematically explore angiogenesis targeting also in the management of psoriasis. We also point out that some psoriasis therapies decrease circulating levels of VEGF-A and normalise the psoriasis-associated vascular pathology in the papillary dermis of plaques of psoriasis and that a subset of patients with constitutionally high levels of VEGF-A may benefit most from the anti-angiogenic therapy we advocate here. Given that novel, well-targeted personalised medicine therapies for the development of psoriasis need to be developed, we explore the hypothesis that VEGF-A and signalling through its receptors constitute a promising target for therapeutic intervention in the future management of psoriasis.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias/tratamento farmacológico , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bevacizumab/uso terapêutico , Vasos Sanguíneos/patologia , Humanos , Camundongos , Psoríase/patologia , Fator A de Crescimento do Endotélio Vascular/genética
5.
Skin Pharmacol Physiol ; 33(3): 110-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32570235

RESUMO

BACKGROUND/AIMS: Vascular endothelial growth factor (VEGF), a key mediator of angiogenesis, plays a key role in physiological processes and is a major contributor to several diseases including cancer and psoriasis. Anti-VEGF therapies are widely used as cancer and ophthalmological treatments. There is some evidence that VEGF blockade may have utility in the management of psoriasis, although their potential has been largely unexplored. We hypothesized that a human skin organ culture could provide a stable ex vivo model in which the cutaneous microvascular network could be studied and experimentally manipulated. METHODS: Punch biopsies (3 mm) of skin, donated by healthy individuals (39-72 years old, n = 5), were incubated with monoclonal antibody (mAb) to human VEGF (bevacizumab) at doses based on data from animal and clinical studies. After 3-day culture, cell death and proliferation as well as vascular endothelial cell changes were assessed using quantitative immunohistomorphometry. RESULTS: Anti-VEGF mAb at 0.8 mg/mL induced a significant increase in cleaved caspase-3 expression in CD31+ cells (p < 0.05). None of the doses tested increased TUNEL or decreased Ki-67 expression in the basal layer of the epidermis, confirming the model's viability. In addition, the lactate dehydrogenase (LDH) assay showed no increase in LDH activity in treated samples compared to untreated control. The highest anti-VEGF mAb dose (0.8 mg/mL) induced an increase in TUNEL expression in the upper epidermis, which did not correlate with caspase-3 immunoreactivity. Further investigation revealed that anti-VEGF mAb did not change the expression of markers of terminal differentiation such as keratin 10, filaggrin, and involucrin, suggesting that VEGF depletion does not affect keratinocyte terminal differentiation. In contrast to the control group, levels of VEGF protein were undetectable in the culture supernatant of samples treated with 0.8 mg/mL of anti-VEGF mAb, suggesting sufficient dose. CONCLUSION: Our pilot study provides the first evidence that anti-VEGF therapy promotes endothelial cell apoptosis in human skin ex vivo. Our pragmatic human skin organ culture assay offers a valuable tool for future preclinical endothelial cell and translational microvascular network/anti-angiogenesis research in human skin.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Células Endoteliais/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Pele/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adulto , Idoso , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais/metabolismo , Proteínas Filagrinas , Humanos , Microvasos/efeitos dos fármacos , Pessoa de Meia-Idade , Projetos Piloto , Pele/irrigação sanguínea , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA