Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(36): eadq0350, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39241064

RESUMO

RNA polymerase II relies on a repetitive sequence domain (YSPTSPS) within its largest subunit to orchestrate transcription. While phosphorylation on serine-2/serine-5 of the carboxyl-terminal heptad repeats is well established, threonine-4's role remains enigmatic. Paradoxically, threonine-4 phosphorylation was only detected after transcription end sites despite functionally implicated in pausing, elongation, termination, and messenger RNA processing. Our investigation revealed that threonine-4 phosphorylation detection was obstructed by flanking serine-5 phosphorylation at the onset of transcription, which can be removed selectively. Subsequent proteomic analyses identified many proteins recruited to transcription via threonine-4 phosphorylation, which previously were attributed to serine-2. Loss of threonine-4 phosphorylation greatly reduces serine-2 phosphorylation, revealing a cross-talk between the two marks. Last, the function analysis of the threonine-4 phosphorylation highlighted its role in alternative 3'-end processing within pro-proliferative genes. Our findings unveil the true genomic location of this evolutionarily conserved phosphorylation mark and prompt a reassessment of functional assignments of the carboxyl-terminal domain.


Assuntos
RNA Polimerase II , Treonina , Transcrição Gênica , Fosforilação , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Treonina/metabolismo , Humanos , Processamento de Terminações 3' de RNA , Serina/metabolismo , Proteômica/métodos
2.
STAR Protoc ; 5(3): 103277, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39196783

RESUMO

The repetitive C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII) becomes differentially phosphorylated throughout the transcription cycle. Here, we present a protocol to site-specifically phosphorylate the CTD of RNAPII by leveraging the specificity of well-characterized CTD kinases. We describe the steps for optimal phosphorylation of the CTD and the preparation of nuclear protein extract. This protocol can be used to identify the interactome of a phospho-CTD and has the potential to identify novel RNAPII-binding proteins. For complete details on the use and execution of this protocol, please refer to Moreno et al.1.

3.
BMC Biol ; 22(1): 83, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609948

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer associated with poor prognosis, intrinsic heterogeneity, plasticity, and therapy resistance. In some GBMs, cell proliferation is fueled by a transcriptional regulator, repressor element-1 silencing transcription factor (REST). RESULTS: Using CRISPR/Cas9, we identified GBM cell lines dependent on REST activity. We developed new small molecule inhibitory compounds targeting small C-terminal domain phosphatase 1 (SCP1) to reduce REST protein level and transcriptional activity in glioblastoma cells. Top leads of the series like GR-28 exhibit potent cytotoxicity, reduce REST protein level, and suppress its transcriptional activity. Upon the loss of REST protein, GBM cells can potentially compensate by rewiring fatty acid metabolism, enabling continued proliferation. Combining REST inhibition with the blockade of this compensatory adaptation using long-chain acyl-CoA synthetase inhibitor Triacsin C demonstrated substantial synergetic potential without inducing hepatotoxicity. CONCLUSIONS: Our results highlight the efficacy and selectivity of targeting REST alone or in combination as a therapeutic strategy to combat high-REST GBM.


Assuntos
Glioblastoma , Fatores de Transcrição , Humanos , Glioblastoma/tratamento farmacológico , Regulação da Expressão Gênica , Encéfalo
4.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38260516

RESUMO

Ethylene plays its essential roles in plant development, growth, and defense responses by controlling the transcriptional reprogramming, in which EIN2-C-directed regulation of histone acetylation is the first key-step for chromatin to perceive ethylene signaling. However, the histone acetyltransferase in this process remains unknown. Here, we identified histone acetyltransferase HAF2, and mutations in HAF2 confer plants with ethylene insensitivity. Furthermore, we found that HAF2 interacts with EIN2-C in response to ethylene. Biochemical assays demonstrated that the bromodomain of HAF2 binds to H3K14ac and H3K23ac peptides with a distinct affinity for H3K14ac; the HAT domain possesses acetyltransferase catalytic activity for H3K14 and H3K23 acetylation, with a preference for H3K14. ChIP-seq results provide additional evidence supporting the role of HAF2 in regulating H3K14ac and H3K23ac levels in response to ethylene. Finally, our findings revealed that HAF2 co-functions with pyruvate dehydrogenase complex (PDC) to regulate H3K14ac and H3K23ac in response to ethylene in an EIN2 dependent manner. Overall, this research reveals that HAF2 as a histone acetyltransferase that forms a complex with EIN2-C and PDC, collectively governing histone acetylation of H3H14ac and H3K23ac, preferentially for H3K14 in response to ethylene.

5.
Crit Rev Biochem Mol Biol ; 59(1-2): 1-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288999

RESUMO

Decades of scientific research have been devoted to unraveling the intricacies of eukaryotic transcription since the groundbreaking discovery of eukaryotic RNA polymerases in the late 1960s. RNA polymerase II, the polymerase responsible for mRNA synthesis, has always attracted the most attention. Despite its structural resemblance to its bacterial counterpart, eukaryotic RNA polymerase II faces a unique challenge in progressing transcription due to the presence of nucleosomes that package DNA in the nuclei. In this review, we delve into the impact of RNA polymerase II and histone signaling on the progression of eukaryotic transcription. We explore the pivotal points of interactions that bridge the RNA polymerase II and histone signaling systems. Finally, we present an analysis of recent cryo-electron microscopy structures, which captured RNA polymerase II-nucleosome complexes at different stages of the transcription cycle. The combination of the signaling crosstalk and the direct visualization of RNA polymerase II-nucleosome complexes provides a deeper understanding of the communication between these two major players in eukaryotic transcription.


Assuntos
Nucleossomos , RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Nucleossomos/metabolismo , Nucleossomos/química , Humanos , Animais , Histonas/metabolismo , Histonas/química , Histonas/genética , Eucariotos/genética , Eucariotos/enzimologia , Eucariotos/metabolismo , Microscopia Crioeletrônica , Transdução de Sinais
6.
Fungal Biol ; 127(3): 918-926, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36906382

RESUMO

The disaccharide trehalose has long been recognized for its role as a stress solute, but in recent years some of the protective effects previously ascribed to trehalose have been suggested to arise from a function of the trehalose biosynthesis enzyme trehalose-6-phosphate (T6P) synthase that is distinct from its catalytic activity. In this study, we use the maize pathogenic fungus Fusarium verticillioides as a model to explore the relative contributions of trehalose itself and a putative secondary function of T6P synthase in protection against stress as well as to understand why, as shown in a previous study, deletion of the TPS1 gene coding for T6P synthase reduces pathogenicity against maize. We report that a TPS1-deletion mutant of F. verticillioides is compromised in its ability to withstand exposure to oxidative stress meant to simulate the oxidative burst phase of maize defense and experiences more ROS-induced lipid damage than the wild-type strain. Eliminating T6P synthase expression also reduces resistance to desiccation, but not resistance to phenolic acids. Expression of catalytically-inactive T6P synthase in the TPS1-deletion mutant leads to a partial rescue of the oxidative and desiccation stress-sensitive phenotypes, suggesting the importance of a T6P synthase function that is independent of its role in trehalose synthesis.


Assuntos
Dessecação , Trealose , Trealose/metabolismo , Estresse Oxidativo
7.
Arch Biochem Biophys ; 733: 109471, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36522814

RESUMO

NahE is a hydratase-aldolase that converts o-substituted trans-benzylidenepyruvates (H, OH, or CO2-) to benzaldehyde, salicylaldehyde, or 2-carboxybenzaldehyde, respectively, and pyruvate. The enzyme is in a bacterial degradative pathway for naphthalene, which is a toxic and persistent environmental contaminant. Sequence, crystallographic, and mutagenic analysis identified the enzyme as a member of the N-acetylneuraminate lyase (NAL) subgroup in the aldolase superfamily. As such, it has a conserved lysine (Lys183) and tyrosine (Tyr155), for Schiff base formation, as well as a GXXGE motif for binding of the pyruvoyl carboxylate group. A crystal structure of the selenomethionine derivative of NahE shows these active site elements along with nearby residues that might be involved in the mechanism and/or specificity. Mutations of five active site amino acids (Thr65, Trp128, Tyr155, Asn157, and Asn281) were constructed and kinetic parameters measured in order to assess the effect(s) on catalysis. The results show that the two Trp128 mutants (Phe and Tyr) have the least effect on catalysis, whereas amino acids with bulky side chains at Thr65 (Val) and Asn281 (Leu) have the greatest effect. Changing Tyr155 to Phe and Asn157 to Ala also hinders catalysis, and the effects fall in between these extremes. These observations are put into a structural context using a crystal structure of the Schiff base of the reaction intermediate. Trapping experiments with substrate, Na(CN)BH3, and wild type enzyme and selected mutants mostly paralleled the kinetic analysis, and identified two salicylaldehyde-modified lysines: the active site lysine (Lys183) and one outside the active site (Lys279). The latter could be responsible for the observed inhibition of NahE by salicylaldehyde. Together, the results provide new insights into the NahE-catalyzed reaction.


Assuntos
Frutose-Bifosfato Aldolase , Bases de Schiff , Frutose-Bifosfato Aldolase/genética , Cinética , Bases de Schiff/química , Bases de Schiff/metabolismo , Lisina , Mutagênicos , Sítios de Ligação , Aldeído Liases/química , Catálise , Hidrolases/metabolismo , Naftalenos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA