Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(9): 2799-2819, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39296266

RESUMO

Telomeres are a protective cap that prevents chromosome ends from being recognized as double-stranded breaks. In somatic cells, telomeres shorten with each cell division due to the end replication problem, which eventually leads to senescence, a checkpoint proposed to prevent uncontrolled cell growth. Tumor cells avoid telomere shortening by activating one of two telomere maintenance mechanisms (TMMs): telomerase reactivation or alternative lengthening of telomeres (ALT). TMMs are a viable target for cancer treatment as they are not active in normal, differentiated cells. Whereas there is a telomerase inhibitor currently undergoing clinical trials, there are no known ALT inhibitors in development, partially because the complex ALT pathway is still poorly understood. For cancers such as neuroblastoma and osteosarcoma, the ALT-positive status is associated with an aggressive phenotype and few therapeutic options. Thus, methods that characterize the key biological pathways driving ALT will provide important mechanistic insight. We have developed a first-in-class phenotypic high-throughput screen to identify small-molecule inhibitors of ALT. Our screen measures relative C-circle level, an ALT-specific biomarker, to detect changes in ALT activity induced by compound treatment. To investigate epigenetic mechanisms that contribute to ALT, we screened osteosarcoma and neuroblastoma cells against an epigenetic-targeted compound library. Hits included compounds that target chromatin-regulating proteins and DNA damage repair pathways. Overall, the high-throughput C-circle assay will help expand the repertoire of potential ALT-specific therapeutic targets and increase our understanding of ALT biology.

2.
Alzheimers Dement (N Y) ; 8(1): e12246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35475262

RESUMO

Introduction: The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program. Methods: Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many protein products expressed by the genes nominated by AMP AD and suitable positive control compounds to be included in the set. Compounds contained within the set were manually selected and annotated with associated published, predicted, and/or experimental data. Results: We built an annotated set of 171 small molecule modulators targeting 98 unique proteins that have been nominated by AMP AD consortium members as novel targets for the treatment of AD. The majority of compounds included in the set are inhibitors. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which will require further optimization. A physical copy of the AD Informer Set can be requested on the Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) website. Discussion: Small molecules that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.

3.
Alzheimers Dement (N Y) ; 8(1): e12253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434254

RESUMO

Introduction: A chemogenomic set of small molecules with annotated activities and implicated roles in Alzheimer's disease (AD) called the AD Informer Set was recently developed and made available to the AD research community: https://treatad.org/data-tools/ad-informer-set/. Methods: Small subsets of AD Informer Set compounds were selected for AD-relevant profiling. Nine compounds targeting proteins expressed by six AD-implicated genes prioritized for study by Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) teams were selected for G-protein coupled receptor (GPCR), amyloid beta (Aß) and tau, and pharmacokinetic (PK) studies. Four non-overlapping compounds were analyzed in microglial cytotoxicity and phagocytosis assays. Results: The nine compounds targeting CAPN2, EPHX2, MDK, MerTK/FLT3, or SYK proteins were profiled in 46 to 47 primary GPCR binding assays. Human induced pluripotent stem cell (iPSC)-derived neurons were treated with the same nine compounds and secretion of Aß peptides (Aß40 and Aß42) as well as levels of phosphophorylated tau (p-tau, Thr231) and total tau (t-tau) peptides measured at two concentrations and two timepoints. Finally, CD1 mice were dosed intravenously to determine preliminary PK and/or brain-specific penetrance values for these compounds. As a final cell-based study, a non-overlapping subset of four compounds was selected based on single-concentration screening for analysis of both cytotoxicity and phagocytosis in murine and human microglia cells. Discussion: We have demonstrated the utility of the AD Informer Set in the validation of novel AD hypotheses using biochemical, cellular (primary and immortalized), and in vivo studies. The selectivity for their primary targets versus essential GPCRs in the brain was established for our compounds. Statistical changes in tau, p-tau, Aß40, and/or Aß42 and blood-brain barrier penetrance were observed, solidifying the utility of specific compounds for AD. Single-concentration phagocytosis results were validated as predictive of dose-response findings. These studies established workflows, validated assays, and illuminated next steps for protein targets and compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA