Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523875

RESUMO

Terminally differentiated murine osteocytes and adipocytes can be reprogrammed using platelet-derived growth factor-AB and 5-azacytidine into multipotent stem cells with stromal cell characteristics. We have now optimized culture conditions to reprogram human adipocytes into induced multipotent stem (iMS) cells and characterized their molecular and functional properties. Although the basal transcriptomes of adipocyte-derived iMS cells and adipose tissue-derived mesenchymal stem cells were similar, there were changes in histone modifications and CpG methylation at cis-regulatory regions consistent with an epigenetic landscape that was primed for tissue development and differentiation. In a non-specific tissue injury xenograft model, iMS cells contributed directly to muscle, bone, cartilage, and blood vessels, with no evidence of teratogenic potential. In a cardiotoxin muscle injury model, iMS cells contributed specifically to satellite cells and myofibers without ectopic tissue formation. Together, human adipocyte-derived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth.


Assuntos
Azacitidina , Fator de Crescimento Derivado de Plaquetas , Adipócitos , Tecido Adiposo , Animais , Azacitidina/farmacologia , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Células-Tronco Multipotentes , Músculos
2.
Transl Pediatr ; 7(3): 211-218, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30159247

RESUMO

BACKGROUND: First trimester miscarriage without underlying medical conditions is most commonly caused by chromosomal abnormalities reported to occur in 50% or more of cases. These chromosomal changes in early losses include both numerical abnormalities and structural alterations that result in gain and/or loss of genetic information. Structural alterations are much less common than numerical changes. Jumping translocations (JTs) are considered extremely rare with only four cases previously reported. METHODS: We report 12 examples of chromosome instability seen in the fetal material of spontaneous first trimester miscarriages in a single study population. RESULTS: In these examples, we observed different cell lines with related chromosomal alterations. Some may be considered to be JT, where a single donor site was observed with different recipients. Others involved more than one site on the "donor" chromosome. One reported miscarriage involved multiple aneuploidy. All alterations resulted in partial trisomies and monosomies which predisposed the pregnancy to chromosomal imbalance and subsequent demise. Patient demographic data did not indicate possible causes of the errors observed. CONCLUSIONS: This is the first report of such a large cohort and is believed to be the result of increased knowledge and depth of analysis in this area, rather than a representation of confounding factors in this population. It is therefore proposed that identifying these chromosomal changes must be incorporated into the system of testing within the clinical environment. We must also recognize that some routine laboratory techniques will fail to detect such genetic changes.

3.
Am J Med Genet A ; 170(10): 2671-80, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287007

RESUMO

Studies during the past 50 years demonstrate the importance of chromosome abnormalities to the occurrence of early pregnancy loss in humans. Intriguingly, there appears to be considerable variation in the rates of chromosome abnormality, with more recent studies typically reporting higher levels than those reported in early studies of spontaneous abortions. We were interested in examining the basis for these differences and accordingly, we reviewed studies of spontaneous abortions conducted in our laboratories over a 40-year-time span. Our analyses confirm a higher rate of abnormality in more recent series of spontaneous abortions, but indicate that the effect is largely, if not entirely, attributable to changes over time in the maternal age structures of the study populations. © 2016 Wiley Periodicals, Inc.


Assuntos
Aborto Espontâneo/epidemiologia , Aborto Espontâneo/genética , Aberrações Cromossômicas , Aborto Espontâneo/história , Conjuntos de Dados como Assunto , Feminino , Idade Gestacional , História do Século XX , História do Século XXI , Humanos , Cariótipo , Idade Materna , Vigilância da População , Gravidez , Razão de Masculinidade , Trissomia
4.
Proc Natl Acad Sci U S A ; 113(16): E2306-15, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044077

RESUMO

Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.


Assuntos
Azacitidina/farmacologia , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/fisiologia
5.
Transl Pediatr ; 4(2): 189-200, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26835373

RESUMO

Miscarriage is a very common occurrence in humans. This paper sets out to present published data on research that has provided increased understanding of pregnancy failure. Clarification of definitions, exploring the range of failures from preclinical to later pregnancy losses, and the scientific tools employed to find information on the losses have been documented. What is now understood, which tools work best, and the associated limitations are all discussed. Early studies used cytogenetic methods and tissue culture to obtain results. Improvements in laboratory tools such as better tissue culture incubators, inverted microscopes, laminar flow hoods, improvements in culture media, all contributed to obtaining more results for patients. These studies demonstrated the significant contribution of unbalanced chromosomal karyotypes to pregnancy failure. Maternal age as a contributing factor in trisomy was clearly demonstrated. First trimester miscarriage exhibits very high cytogenetic abnormality; in contrast to very low rates in later losses. Combining data across all time periods of pregnancy will affect the significance of chromosomal error in the early pregnancy failures. Cytogenetic methods investigate whole genomes, and are considered to represent the standard against which new methods must be validated. New molecular genetic methods provide the opportunity to examine samples without the necessity of tissue culture. Techniques may be site-specific or whole genome. Fluorescent in situ hybridisation (FISH), comparative genomic hybridisation (CGH), array-based CGH, single nucleotide polymorphism (SNP) detection, quantitative polymerase chain reaction (qPCR), and quantitative fluorescent PCR (QF-PCR), have all been utilised. In comparison studies with classical/conventional cytogenetics, each newer method offers advantages and limitations. At the present time, a combined approach using conventional and molecular methods will elucidate the cause of miscarriage for almost all samples. In a clinical setting this would be optimum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA