Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cancer Res Commun ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904264

RESUMO

Phosphatase of Regenerating Liver-2 (PRL2; also known as PTP4A2) has been linked to cancer progression. Still, its exact role in glioblastoma (GB), the most aggressive type of primary brain tumor, remains elusive. Here we report that pharmacological treatment using JMS-053, a pan-PRL inhibitor, inhibits GB cell viability and spheroids growth. We also show that PTP4A2 is associated with a poor prognosis in gliomas, and its expression correlates with GBM aggressiveness. Using a GB orthotopic xenograft model, we show that PTP4A2 overexpression promotes tumor growth and reduces mouse survival. Furthermore, PTP4A2 deletion leads to increased apoptosis and pro-inflammatory signals. Using a syngeneic GB model, depletion of PTP4A2 reduces tumor growth and induces a shift in the tumor microenvironment towards an immunosuppressive state. In vitro assays show that cell proliferation is not affected in PTP4A2 deficient or overexpressing cells highlighting the importance of the microenvironment in PTP4A2 functions. Collectively, our results indicate that PTP4A2 promotes GB growth in response to microenvironmental pressure and supports the targeting of PTP4A2 as therapeutic strategy against GB.

2.
Proc Natl Acad Sci U S A ; 120(14): e2221083120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972446

RESUMO

Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.


Assuntos
Magnésio , Canais de Cátion TRPM , Magnésio/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Transdução de Sinais , Metabolismo Energético
3.
Nat Commun ; 13(1): 6816, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433951

RESUMO

Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.


Assuntos
Acetaminofen , Proteínas de Transporte de Cátions , Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Magnésio , Animais , Camundongos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ciclinas/genética , Ciclinas/metabolismo , Hepatopatias/sangue , Hepatopatias/genética , Hepatopatias/prevenção & controle , Magnésio/sangue , Magnésio/uso terapêutico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
4.
FASEB J ; 35(7): e21708, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169549

RESUMO

Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.


Assuntos
Metabolismo Energético/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Tirosina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células HCT116 , Células HEK293 , Humanos , Fosforilação/fisiologia , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
5.
Cell Mol Life Sci ; 78(13): 5427-5445, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34089346

RESUMO

Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-ß-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Ciclinas/metabolismo , Homeostase , Magnésio/metabolismo , Fatores de Ribosilação do ADP/genética , Transporte Biológico , Ciclinas/genética , Glicosilação , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica
6.
Commun Biol ; 3(1): 603, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097786

RESUMO

Protein tyrosine phosphatases are essential modulators of angiogenesis and have been identified as novel therapeutic targets in cancer and anti-angiogenesis. The roles of atypical Phosphatase of Regenerative Liver (PRL) phosphatases in this context remain poorly understood. Here, we investigate the biological function of PRL phosphatases in developmental angiogenesis in the postnatal mouse retina and in cell culture. We show that endothelial cells in the retina express PRL-2 encoded by the Ptp4a2 gene, and that inducible endothelial and global Ptp4a2 mutant mice exhibit defective retinal vascular outgrowth, arteriovenous differentiation, and sprouting angiogenesis. Mechanistically, PTP4A2 deletion limits angiogenesis by inhibiting endothelial cell migration and the VEGF-A, DLL-4/NOTCH-1 signaling pathway. This study reveals the importance of PRL-2 as a modulator of vascular development.


Assuntos
Proteínas Imediatamente Precoces , Neovascularização Fisiológica/genética , Proteínas Tirosina Fosfatases , Transdução de Sinais/genética , Animais , Movimento Celular/genética , Células Cultivadas , Células Endoteliais/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/fisiologia , Retina/citologia , Retina/metabolismo , Malformações Vasculares/genética , Malformações Vasculares/patologia
7.
Dev Dyn ; 249(5): 610-621, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31872467

RESUMO

BACKGROUND: Ocular lens clouding is termed as cataract, which depending on the onset, is classified as congenital or age-related. Developing new cataract treatments requires new models. Thus far, Xenopus embryos have not been evaluated as a system for studying cataract. RESULTS: We characterized the developmental process of lens formation in Xenopus laevis tailbuds and tadpoles, and we disrupted the orthologues of three mammalian cataract-linked genes in F0 by CRISPR/Cas9. We assessed the consequences of gene inactivation by combining external examination with histochemical analyses and functional vision assays. Inactivating the key metazoan eye development transcription factor gene pax6 produces a strong eye phenotype including an absence of eye tissue. Inactivating the genes for gap-junction protein and a nuclease, gja8 and dnase2b, produces lens defects that share several features of human cataracts, including impaired vision acuity, nuclei retention in lens fiber cells, and actin fibers disorganization. We tested the potential improvement of the visual acuity of gja8 crispant tadpoles upon treatment with the molecular chaperone 4-phenylbutyrate. CONCLUSION: Xenopus is a valuable model organism to understand the molecular pathology of congenital eye defects, including cataracts, and to screen molecules with a potential to prevent or reverse cataracts.


Assuntos
Xenopus laevis/fisiologia , Animais , Catarata/fisiopatologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Cristalino/fisiologia
8.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842432

RESUMO

The four member family of "Cyclin and Cystathionine ß-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico , Humanos , Magnésio/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Relação Estrutura-Atividade
9.
Proc Natl Acad Sci U S A ; 116(8): 2925-2934, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718434

RESUMO

Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.


Assuntos
Reprogramação Celular/genética , Metabolismo Energético/genética , Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Quinases Proteína-Quinases Ativadas por AMP , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions , Proteínas de Ciclo Celular/genética , Ciclinas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Regeneração Hepática/genética , Células MCF-7 , Magnésio/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Neoplasias/patologia , Proteínas Quinases/genética
10.
FEBS J ; 285(21): 3886-3908, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29770564

RESUMO

The human Phosphatase of Regenerative Liver (PRL) family comprises three members (PRL-1, -2, -3; gene name PTP4A1, PTP4A2, PTP4A3) that are highly expressed in a majority of cancers. This review summarizes our current understanding of PRL biology, including an overview of their evolutionary relationships and the regulatory mechanisms controlling their expression. We provide an updated view on our current knowledge on the PRL functions in solid tumors, hematological cancer, and normal physiology, particularly emphasizing on the use of in vivo mouse models. We also highlight a novel relationship positioning PRL as a central node controlling magnesium homeostasis through an association with the CNNM proteins, which are involved in magnesium transport.


Assuntos
Homeostase , Regeneração Hepática , Neoplasias/enzimologia , Neoplasias/patologia , Oncogenes , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo
11.
JCI Insight ; 2(13)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28679948

RESUMO

Magnesium (Mg2+) plays pleiotropic roles in cellular biology, and it is essentially required for all living organisms. Although previous studies demonstrated intracellular Mg2+ levels were regulated by the complex of phosphatase of regenerating liver 2 (PRL2) and Mg2+ transporter of cyclin M (CNNMs), physiological functions of PRL2 in whole animals remain unclear. Interestingly, Mg2+ was recently identified as a regulator of circadian rhythm-dependent metabolism; however, no mechanism was found to explain the clock-dependent Mg2+ oscillation. Herein, we report PRL2 as a missing link between sex and metabolism, as well as clock genes and daily cycles of Mg2+ fluxes. Our results unveil that PRL2-null animals displayed sex-dependent alterations in body composition, and expression of PRLs and CNNMs were sex- and circadian time-dependently regulated in brown adipose tissues. Consistently, PRL2-KO mice showed sex-dependent alterations in thermogenesis and in circadian energy metabolism. These physiological changes were associated with an increased rate of uncoupled respiration with lower intracellular Mg2+ in PRL2-KO cells. Moreover, PRL2 deficiency causes inhibition of the ATP citrate lyase axis, which is involved in fatty acid synthesis. Overall, our findings support that sex- and circadian-dependent PRL2 expression alter intracellular Mg2+ levels, which accordingly controls energy metabolism status.

12.
PLoS One ; 12(5): e0178489, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28558026

RESUMO

Receptor tyrosine phosphatase sigma (RPTPσ) plays an important role in the regulation of axonal outgrowth and neural regeneration. Recent studies have identified two RPTPσ ligands, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPG), which can modulate RPTPσ activity by affecting its dimerization status. Here, we developed a split luciferase assay to monitor RPTPσ dimerization in living cells. Using this system, we demonstrate that heparin, an analog of heparan sulfate, induced the dimerization of RPTPσ, whereas chondroitin sulfate increased RPTPσ activity by inhibiting RPTPσ dimerization. Also, we generated several novel RPTPσ IgG monoclonal antibodies, to identify one that modulates its activity by inducing/stabilizing dimerization in living cells. Lastly, we demonstrate that this antibody promotes neurite outgrowth in SH-SY5Y cells. In summary, we demonstrated that the split luciferase RPTPσ activity assay is a novel high-throughput approach for discovering novel RPTPσ modulators that can promote axonal outgrowth and neural regeneration.


Assuntos
Anticorpos/imunologia , Proteínas Tirosina Fosfatases Semelhantes a Receptores/imunologia , Animais , Axônios , Linhagem Celular , Humanos , Camundongos , Eletroforese em Gel de Poliacrilamida Nativa
13.
J Biol Chem ; 292(3): 786-801, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27899452

RESUMO

Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine ß-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas Imediatamente Precoces/química , Magnésio/química , Proteínas Oncogênicas/química , Proteínas Tirosina Fosfatases/química , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Magnésio/metabolismo , Camundongos , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
14.
Dev Biol ; 426(2): 449-459, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27546377

RESUMO

Regulation of alternative splicing is an important process for cell differentiation and development. Down-regulation of Ptbp1, a regulatory RNA-binding protein, leads to developmental skin defects in Xenopus laevis. To identify Ptbp1-dependent splicing events potentially related to the phenotype, we conducted RNAseq experiments following Ptbp1 depletion. We systematically compared exon-centric and junction-centric approaches to detect differential splicing events. We showed that the junction-centric approach performs far better than the exon-centric approach in Xenopus laevis. We carried out the same comparisons using simulated data in human, which led us to propose that the better performances of the junction-centric approach in Xenopus laevis essentially relies on an incomplete exonic annotation associated with a correct transcription unit annotation. We assessed the capacity of the exon-centric and junction-centric approaches to retrieve known and to discover new Ptbp1-dependent splicing events. Notably, the junction-centric approach identified Ptbp1-controlled exons in agfg1, itga6, actn4, and tpm4 mRNAs, which were independently confirmed. We conclude that the junction-centric approach allows for a more complete and informative description of splicing events, and we propose that this finding might hold true for other species with incomplete annotations.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/genética , Animais , Simulação por Computador , Embrião não Mamífero/metabolismo , Éxons/genética , Biblioteca Gênica , Modelos Genéticos , Anotação de Sequência Molecular , Morfolinos/farmacologia , RNA Mensageiro/genética , Alinhamento de Sequência , Análise de Sequência de RNA , Xenopus laevis/embriologia
15.
J Biol Chem ; 291(20): 10716-25, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26969161

RESUMO

The oncogenic phosphatase of regenerating liver 2 (PRL-2) has been shown to regulate intracellular magnesium levels by forming a complex through an extended amino acid loop present in the Bateman module of the CNNM3 magnesium transporter. Here we identified highly conserved residues located on this amino acid loop critical for the binding with PRL-2. A single point mutation (D426A) of one of those critical amino acids was found to completely disrupt PRL-2·human Cyclin M 3 (CNNM3) complex formation. Whole-cell voltage clamping revealed that expression of CNNM3 influenced the surface current, whereas overexpression of the binding mutant had no effect, indicating that the binding of PRL-2 to CNNM3 is important for the activity of the complex. Interestingly, overexpression of the CNNM3 D426A-binding mutant in cancer cells decreased their ability to proliferate under magnesium-deprived situations and under anchorage-independent growth conditions, demonstrating a PRL-2·CNNM3 complex-dependent oncogenic advantage in a more stringent environment. We further confirmed the importance of this complex in vivo using an orthotopic xenograft breast cancer model. Finally, because molecular modeling showed that the Asp-426 side chain in CNNM3 buries into the catalytic cavity of PRL-2, we showed that a PRL inhibitor could abrogate complex formation, resulting in a decrease in proliferation of human breast cancer cells. In summary, we provide evidence that this fundamental regulatory aspect of PRL-2 in cancer cells could potentially lead to broadly applicable and innovative therapeutic avenues.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Ciclinas/antagonistas & inibidores , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sequência Conservada , Ciclinas/química , Ciclinas/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/genética , Piridonas/farmacologia , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Dev Biol ; 409(2): 489-501, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546114

RESUMO

In humans, genetic diseases affecting skin integrity (genodermatoses) are generally caused by mutations in a small number of genes that encode structural components of the dermal-epidermal junctions. In this article, we first show that inactivation of both exosc9, which encodes a component of the RNA exosome, and ptbp1, which encodes an RNA-binding protein abundant in Xenopus embryonic skin, impairs embryonic Xenopus skin development, with the appearance of dorsal blisters along the anterior part of the fin. However, histological and electron microscopy analyses revealed that the two phenotypes are distinct. Exosc9 morphants are characterized by an increase in the apical surface of the goblet cells, loss of adhesion between the sensorial and peridermal layers, and a decrease in the number of ciliated cells within the blisters. Ptbp1 morphants are characterized by an altered goblet cell morphology. Gene expression profiling by deep RNA sequencing showed that the expression of epidermal and genodermatosis-related genes is also differentially affected in the two morphants, indicating that alterations in post-transcriptional regulations can lead to skin developmental defects through different routes. Therefore, the developing larval epidermis of Xenopus will prove to be a useful model for dissecting the post-transcriptional regulatory network involved in skin development and stability with significant implications for human diseases.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Técnicas de Silenciamento de Genes , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Pele/embriologia , Pele/patologia , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Nadadeiras de Animais/embriologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/patologia , Embrião não Mamífero/ultraestrutura , Epiderme/efeitos dos fármacos , Epiderme/patologia , Epiderme/ultraestrutura , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Hibridização In Situ , Morfolinos/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas de Xenopus/metabolismo
17.
Mol Cell Biol ; 35(4): 758-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25512611

RESUMO

The output of alternative splicing depends on the cooperative or antagonistic activities of several RNA-binding proteins (RBPs), like Ptbp1 and Esrp1 in Xenopus. Fine-tuning of the RBP abundance is therefore of prime importance to achieve tissue- or cell-specific splicing patterns. Here, we addressed the mechanisms leading to the high expression of the ptbp1 gene, which encodes Ptbp1, in Xenopus epidermis. Two splice isoforms of ptbp1 mRNA differ by the presence of an alternative exon 11, and only the isoform including exon 11 can be translated to a full-length protein. In vivo minigene assays revealed that the nonproductive isoform was predominantly produced. Knockdown experiments demonstrated that Esrp1, which is specific to the epidermis, strongly stimulated the expression of ptbp1 by favoring the productive isoform. Consequently, knocking down esrp1 phenocopied ptbp1 inactivation. Conversely, Ptbp1 repressed the expression of its own gene by favoring the nonproductive isoform. Hence, a complex posttranscriptional mechanism controls Ptbp1 abundance in Xenopus epidermis: skipping of exon 11 is the default splicing pattern, but Esrp1 stimulates ptbp1 expression by favoring the inclusion of exon 11 up to a level that is limited by Ptbp1 itself. These results decipher a posttranscriptional mechanism that achieves various abundances of the ubiquitous RBP Ptbp1 in different tissues.


Assuntos
Proteínas de Anfíbios/genética , Epiderme/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Xenopus laevis/genética , Processamento Alternativo , Proteínas de Anfíbios/antagonistas & inibidores , Proteínas de Anfíbios/metabolismo , Animais , Embrião não Mamífero , Epiderme/crescimento & desenvolvimento , Éxons , Genótipo , Íntrons , Fenótipo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
18.
Int J Dev Biol ; 58(10-12): 751-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26154316

RESUMO

Regulatory RNA binding proteins allow for specific control of gene expression in a very dynamic manner. In mammals ZFP36, formerly known as Tristetraprolin, controls the inflammatory response by binding to an AU-rich element located in the 3' untranslated region of its target mRNAs. The developping embryo relies on a population of primitive macrophages to ensure proper immunity. Although the role of zfp36 in adult immunity has been extensively studied, its expression in the developing immune system has been poorly documented. Here, we have used whole mount in situ hybridization with a 3' UTR specific probe to address the expression of zfp36 in developing Xenopus tropicalis embryos. We have shown that zfp36 is expressed in two distinct cellular populations. First, it is a new marker of primititive myeloid cells, being coexpressed with the myeloid marker mpo. Therefore this early expression may suggest a role for zfp36 in macrophage differentiation and activation. In addition, a second cell population was found to transiently express zfp36, but not mpo, along the fusing neural folds and may correspond to cells undergoing autophagy during neural tube closure.


Assuntos
Regiões 3' não Traduzidas/genética , Células Mieloides/metabolismo , Crista Neural/metabolismo , Tubo Neural/embriologia , Tristetraprolina/biossíntese , Animais , Autofagia/genética , Regulação da Expressão Gênica/genética , Fator Estimulador de Colônias de Granulócitos/biossíntese , Inflamação/imunologia , Interleucina-3/biossíntese , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/biossíntese , Tristetraprolina/imunologia , Xenopus/embriologia , Xenopus/metabolismo
19.
Int J Dev Biol ; 56(9): 747-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23124965

RESUMO

The PTB (polypyrimidine tract binding protein) family of RNA-binding proteins plays a critical role in development through the regulation of post-transcriptional events. We have determined expression patterns of the three members of this gene family ptbp1, ptbp2 and ptbp3 during Xenopus tropicalis embryogenesis using whole-mount in situ hybridization. Our results show that each paralog presents a unique pattern of expression. ptbp1 is the prevalent maternal mRNA and is differentially expressed in the three germ layers. Later in development, it is widely expressed in the embryo including the epidermis, the dermatome, the intermediate mesoderm, the lateral plate mesoderm and the neural crest. ptbp2 expression is restricted to the nervous system including the brain, the neural retina and the spinal cord and the intermediate mesoderm. In addition to being expressed in erythroid precursors, ptbp3 is present in specific subdomains of the brain and the spinal cord, as well as in the posterior part of the notochord, suggesting it may play a role in the patterning of the nervous system. In the eye, each of the three genes is expressed in a specific structure which emphasizes their non-redundant function during development. Strickingly, our experiments also revealed that none of the three paralogs was expressed in the myotome, suggesting that the absence of PTB activity is a key determinant to display myotomal splicing patterns.


Assuntos
Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas de Xenopus/genética , Xenopus/genética , Animais , Mesoderma/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
20.
Methods Mol Biol ; 917: 347-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22956098

RESUMO

Alternative splicing, the process by which distinct mature mRNAs can be produced from a single primary transcript, is a key mechanism to increase the organism complexity. The generation of alternative splicing pattern is a means to expand the proteome diversity and also to control gene expression through the regulation of mRNA abundance. Alternative splicing is therefore particularly prevalent during development and accordingly numerous splicing events are regulated in a tissue or temporal manner. To study the roles of alternative splicing during developmental processes and decipher the molecular mechanisms that underlie temporal and spatial regulation, it is important to develop in vivo whole animal studies. In this chapter, we present the advantages of using the amphibian Xenopus as a fully in vivo model to study alternative splicing and we describe the experimental procedures that can be used with Xenopus laevis embryos and oocytes to define the cis-regulatory elements and identify the associated trans-acting factors.


Assuntos
Processamento Alternativo , Xenopus laevis/genética , Animais , Sequência de Bases , Gonadotropina Coriônica/administração & dosagem , Embrião não Mamífero/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Masculino , Microinjeções , Dados de Sequência Molecular , Morfolinos/genética , Oócitos/citologia , Oócitos/metabolismo , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição , Substâncias para o Controle da Reprodução/administração & dosagem , Análise de Sequência de RNA , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA