Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 28(22): 5686-90, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18509029

RESUMO

Experience-dependent regulation of synaptic strength in the horizontal connections in layer 1 of the primary motor cortex is likely to play an important role in motor learning. Dendritic spines, the primary sites of excitatory synapses in the brain, are known to change shape in response to various experimental stimuli. We used a rat motor learning model to examine connection strength via field recordings in slices and confocal imaging of labeled spines to explore changes induced solely by learning a simple motor task. We report that motor learning increases response size, while transiently occluding long-term potentiation (LTP) and increasing spine width in layer 1. This demonstrates learning-induced changes in behavior, synaptic responses, and structure in the same animal, suggesting that an LTP-like process in the motor cortex mediates the initial learning of a skilled task.


Assuntos
Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Córtex Motor/ultraestrutura , Plasticidade Neuronal/fisiologia , Aminoácidos , Análise de Variância , Animais , Comportamento Animal , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Ciclo Estral/fisiologia , Feminino , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos da radiação , Microscopia Confocal/métodos , Destreza Motora/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Brain Res ; 1184: 65-71, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-16600191

RESUMO

Most excitatory synapses in the CNS form on dendritic spines, tiny protrusions from the dendrites of excitatory neurons. As such, spines are likely loci of synaptic plasticity. Spines are dynamic structures, but the functional consequences of dynamic changes in these structures in the mature brain are unclear. Changes in spine density, morphology, and motility have been shown to occur with paradigms that induce synaptic plasticity, as well as altered sensory experience and neuronal activity. These changes potentially lead to an alteration in synaptic connectivity and strength between neuronal partners, affecting the efficacy of synaptic communication. Here, we review the formation and modification of excitatory synapses on dendritic spines as it relates to plasticity in the central nervous system after the initial phase of synaptogenesis. We will also discuss some of the molecular links that have been implicated in both synaptic plasticity and the regulation of spine morphology.


Assuntos
Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/ultraestrutura , Sinapses/fisiologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Neurônios/fisiologia
3.
J Comp Neurol ; 490(1): 72-84, 2005 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16041714

RESUMO

Activity plays multiple roles in the expression of synaptic plasticity, and has been shown to regulate the localization of both neurotransmitter receptors and downstream signaling machinery. However, the role of activity in central synapse formation and organization is incompletely understood. Some studies indicate that synapse formation can occur in the absence of synaptic activity, while others indicate that activity is required for synapse maintenance and receptor recruitment. In addition, the effects of long-term blockade of transmission generally, rather than blockade of specific receptors, on postsynaptic protein complement has been poorly characterized. In order to address the role of activity in synapse formation and postsynaptic specialization, we used tetanus toxin to chronically cleave VAMP2 and inhibit SNARE-mediated neurotransmitter release in cultured hippocampal neurons. Although these neurons are deficient in synaptic release, they are of normal size and morphology. In addition, both excitatory and inhibitory synapses form along their processes with normal density. These synapses have a remarkably similar cellular and molecular organization compared to controls, and are capable of recruiting postsynaptic scaffolding proteins, GABA, and glutamate receptors. Subcellular enrichment of synaptic proteins into specialized domains also appears intact. These data indicate that global activity inhibition is insufficient to disrupt central synapse formation or organization.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Toxina Tetânica/farmacologia , Tetrodotoxina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Dendritos/metabolismo , Embrião de Mamíferos , Proteínas Ativadoras de GTPase/metabolismo , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica/métodos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/efeitos dos fármacos , Neurônios/citologia , Neurônios/fisiologia , Proteínas R-SNARE , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de Glutamato/metabolismo , Sinapsinas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Proteína Vesicular 1 de Transporte de Glutamato
4.
J Neurosci ; 25(27): 6379-88, 2005 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16000628

RESUMO

We examined the changes that arise when neurotransmitter release is inhibited in a subpopulation of hippocampal neurons in coculture with normally active neighbors. Subsets of neurons were presynaptically silenced by chronic expression of tetanus toxin light chain tagged with cyan fluorescent protein (TNTCFP). Surprisingly, silenced neurons formed as many presynaptic terminals as their active neighbors when grown together on glial microislands. However, silenced neurons could not recruit the AMPA-type glutamate receptor subunit GluR1 as efficiently when competing with active neighbors. The immunofluorescence intensity ratio of GluR1 at synaptic puncta versus shaft was reduced by 22% opposite TNTCFP-expressing terminals compared with active neighbors. In contrast, this effect is abolished when vesicular release is blocked in all neurons. Local presynaptic inhibition by TNTCFP did not change the synaptic level of the AMPA receptor subunits GluR2 or GluR2/3 or of the PSD95 (postsynaptic density 95) family scaffolding proteins. Thus, neurotransmitter release selectively regulates the AMPA receptor population on a synapse-by-synapse basis but is not essential for an axon to efficiently compete for synaptic territory in a simple model system. These results demonstrate precise input specificity of postsynaptic receptor composition via differential activity among neighbor synapses.


Assuntos
Receptores de AMPA/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Animais , Astrócitos , Axônios/metabolismo , Células Cultivadas/metabolismo , Técnicas de Cocultura , Proteína 4 Homóloga a Disks-Large , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Técnicas de Patch-Clamp , Subunidades Proteicas , Ratos , Receptores de AMPA/química , Receptores Pré-Sinápticos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Transfecção , Proteína 2 Associada à Membrana da Vesícula/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA