Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS One ; 9(3): e90965, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24603989

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, remains a major health problem. BPD is characterized by impaired alveolar development and complicated by pulmonary hypertension (PHT). Currently there is no specific treatment for BPD. Hydrogen sulfide (H2S), carbon monoxide and nitric oxide (NO), belong to a class of endogenously synthesized gaseous molecules referred to as gasotransmitters. While inhaled NO is already used for the treatment of neonatal PHT and currently tested for the prevention of BPD, H2S has until recently been regarded exclusively as a toxic gas. Recent evidence suggests that endogenous H2S exerts beneficial biological effects, including cytoprotection and vasodilatation. We hypothesized that H2S preserves normal alveolar development and prevents PHT in experimental BPD. METHODS: We took advantage of a recently described slow-releasing H2S donor, GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) to study its lung protective potential in vitro and in vivo. RESULTS: In vitro, GYY4137 promoted capillary-like network formation, viability and reduced reactive oxygen species in hyperoxia-exposed human pulmonary artery endothelial cells. GYY4137 also protected mitochondrial function in alveolar epithelial cells. In vivo, GYY4137 preserved and restored normal alveolar growth in rat pups exposed from birth for 2 weeks to hyperoxia. GYY4137 also attenuated PHT as determined by improved pulmonary arterial acceleration time on echo-Doppler, pulmonary artery remodeling and right ventricular hypertrophy. GYY4137 also prevented pulmonary artery smooth muscle cell proliferation. CONCLUSIONS: H2S protects from impaired alveolar growth and PHT in experimental O2-induced lung injury. H2S warrants further investigation as a new therapeutic target for alveolar damage and PHT.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Hiperóxia/tratamento farmacológico , Lesão Pulmonar/prevenção & controle , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Substâncias Protetoras/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hiperóxia/induzido quimicamente , Hiperóxia/metabolismo , Hiperóxia/patologia , Recém-Nascido , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Morfolinas/química , Compostos Organotiofosforados/química , Oxigênio/efeitos adversos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
2.
Circ Res ; 112(2): 347-54, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23233754

RESUMO

RATIONALE: Right ventricular (RV) function is the most important determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). Endothelin (ET)-1 receptor antagonists (ERAs) are approved therapies for PAH. It is not known whether ERAs have effects on the RV, in addition to their vasodilating/antiproliferative effects in pulmonary arteries. OBJECTIVE: We hypothesized that the ET axis is upregulated in RV hypertrophy (RVH) and that ERAs have direct effects on the RV myocardium. METHODS AND RESULTS: RV myocardial samples from 34 patients with RVH were compared with 16 nonhypertrophied RV samples, and from rats with normal RV versus RVH attributable to PAH. Confocal immunohistochemistry showed that RVH myocardial ET type A (but not type B) receptor and ET-1 protein levels were increased compared with the nonhypertrophied RVs and positively correlated with the degree of RVH (RV thickness/body surface area; r(2)=0.838 and r(2)=0.818, respectively; P<0.01). These results were recapitulated in the rat model. In modified Langendorff perfusions, ERAs (BQ-123 and bosentan 10(-7,-6,-5) mol/L) decreased contractility in the hypertrophied, but not normal RV, in a dose-dependent manner (P<0.01). CONCLUSIONS: Patients and rats with PAH have an upregulation of the myocardial ET axis in RVH. This might be a compensatory mechanism to preserve RV contractility, as the afterload increases. ERAs use might potentially worsen RV function, and this could explain some of the peripheral edema noted clinically with these agents. Further studies are required to evaluate the effects of ERAs on the RV in patients with RVH and PAH.


Assuntos
Endotelina-1/biossíntese , Endotelinas/biossíntese , Hipertrofia Ventricular Direita/metabolismo , Receptor de Endotelina A/biossíntese , Regulação para Cima/fisiologia , Função Ventricular Direita , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Endotelinas/fisiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Receptor de Endotelina A/fisiologia , Função Ventricular Direita/fisiologia , Adulto Jovem
3.
Am J Respir Crit Care Med ; 185(5): 564-74, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22161159

RESUMO

RATIONALE: Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. OBJECTIVES: We hypothesized that EphrinB2 promotes alveolar development and repair. METHODS: We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. MEASUREMENTS AND MAIN RESULTS: In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. CONCLUSION: The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.


Assuntos
Efrina-B2/fisiologia , Pulmão/crescimento & desenvolvimento , Neovascularização Fisiológica/fisiologia , Animais , Apoptose/fisiologia , Endotélio/fisiologia , Técnicas de Silenciamento de Genes , Hipertensão Pulmonar/fisiopatologia , Pulmão/irrigação sanguínea , Lesão Pulmonar/fisiopatologia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/crescimento & desenvolvimento , Ratos , Receptores da Família Eph/fisiologia , Cicatrização/fisiologia
4.
J Thorac Cardiovasc Surg ; 136(1): 168-78, 178.e1-3, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18603070

RESUMO

OBJECTIVES: The right ventricle fails quickly after increases in its afterload (ie, pulmonary hypertension) compared with the left ventricle (ie, systemic hypertension), resulting in significant morbidity and mortality. We hypothesized that the poor performance of the hypertrophied right ventricle is caused, at least in part, by a suboptimal mitochondrial/metabolic remodeling. METHODS/RESULTS: We studied mitochondrial membrane potential, a surrogate for mitochondrial function, in human (n = 11) and rat hearts with physiologic (neonatal) and pathologic (pulmonary hypertension) right ventricular hypertrophy in vivo and in vitro. Mitochondrial membrane potential is higher in the normal left ventricle compared with the right ventricle but is highest in the hypertrophied right ventricle, both in myocardium and in isolated cardiomyocytes (P < .01). Mitochondrial membrane potential correlated positively with the degree of right ventricular hypertrophy in vivo and was recapitulated in phenylephrine-treated neonatal cardiomyocytes, an in vitro model of hypertrophy. The phenylephrine-induced mitochondrial hyperpolarization was reversed by VIVIT, an inhibitor of the nuclear factor of activated T lymphocytes, a transcription factor regulating the expression of several mitochondrial enzymes during cardiac development and hypertrophy. The clinically used drug dichloroacetate, known to increase the mitochondria-based glucose oxidation, reversed both the phenylephrine-induced mitochondrial hyperpolarization and nuclear factor of activated T lymphocytes (NFAT) activation. In Langendorff perfusions, dichloroacetate increased rat right ventricular inotropy in hypertrophied right ventricles (P < .01) but not in normal right ventricles, suggesting that mitochondrial hyperpolarization in right ventricular hypertrophy might be associated with its suboptimal performance. CONCLUSIONS: The dynamic changes in mitochondrial membrane potential during right ventricular hypertrophy are chamber-specific, associated with activation of NFAT, and can be pharmacologically reversed leading to improved contractility. This mitochondrial remodeling might provide a framework for development of novel right ventricle-specific therapies.


Assuntos
Hipertrofia Ventricular Direita/terapia , Mitocôndrias/metabolismo , Células Musculares/metabolismo , Remodelação Ventricular , Adulto , Animais , Células Cultivadas , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Lactente , Recém-Nascido , Masculino , Potenciais da Membrana , Pessoa de Meia-Idade , Músculo Liso/metabolismo , Miocárdio/patologia , Fatores de Transcrição NFATC/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Am J Respir Crit Care Med ; 178(4): 399-406, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18511704

RESUMO

RATIONALE: Neonatal chronic lung disease (CLD), caused by prolonged mechanical ventilation (MV) with O(2)-rich gas, is the most common cause of long-term hospitalization and recurrent respiratory illness in extremely premature infants. Recurrent episodes of hypoxemia and associated ventilator adjustments often lead to worsening CLD. The mechanism that causes these hypoxemic episodes is unknown. Hypoxic pulmonary vasoconstriction (HPV), which is partially controlled by O(2)-sensitive voltage-gated potassium (K(v)) channels, is an important adaptive response to local hypoxia that helps to match perfusion and ventilation in the lung. OBJECTIVES: To test the hypothesis that chronic lung injury (CLI) impairs HPV. METHODS: We studied preterm lambs that had MV with O(2)-rich gas for 3 weeks and newborn rats that breathed 95%-O(2) for 2 weeks, both of which resulted in airspace enlargement and pulmonary vascular changes consistent with CLD. MEASUREMENTS AND MAIN RESULTS: HPV was attenuated in preterm lambs with CLI after 2 weeks of MV and in newborn rats with CLI after 2 weeks of hyperoxia. HPV and constriction to the K(v)1.x-specific inhibitor, correolide, were preferentially blunted in excised distal pulmonary arteries (dPAs) from hyperoxic rats, whose dPAs exhibited decreased K(v)1.5 and K(v)2.1 mRNA and K(+) current. Intrapulmonary gene transfer of K(v)1.5, encoding the ion channel that is thought to trigger HPV, increased O(2)-sensitive K(+) current in cultured smooth muscle cells from rat dPAs, and restored HPV in hyperoxic rats. CONCLUSIONS: Reduced expression/activity of O(2)-sensitive K(v) channels in dPAs contributes to blunted HPV observed in neonatal CLD.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Modelos Animais de Doenças , Hipóxia/fisiopatologia , Pulmão/irrigação sanguínea , Oxigênio/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Vasoconstrição/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Expressão Gênica/genética , Técnicas de Transferência de Genes , Idade Gestacional , Homeostase , Humanos , Recém-Nascido , Miócitos de Músculo Liso/fisiologia , Oxigenoterapia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA Mensageiro/genética , Ratos , Ovinos , Relação Ventilação-Perfusão/fisiologia
6.
FASEB J ; 18(12): 1382-91, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15333581

RESUMO

Female sexual function is under-studied, and mechanisms of clitoral engorgement-relaxation are incompletely understood. Penile erection results from nitric oxide (NO) -induced cyclic guanosine monophosphate (cGMP) accumulation. cGMP-dependent protein kinase (PKG) activates large-conductance, calcium-activated potassium channels (BK(Ca)), thereby hyperpolarizing and relaxing vascular and trabecular smooth muscle cells, allowing engorgement. We hypothesize rat clitorises relax by a similar mechanism. Rat clitorises express components of the proposed pathway: neuronal and endothelial NO synthases, soluble guanylyl cyclase (sGC), type 5 phosphodiesterase (PDE-5), and BK(Ca) channels. The NO donor diethylamine NONOate (DEANO), the PKG activator 8-pCPT-cGMP, and the PDE-5 inhibitor sildenafil, cause dose-dependent clitoral relaxation that is inhibited by antagonists of PKG (Rp-8-Br-cGMPS) or BK(Ca) channels (iberiotoxin). Electrical field stimulation induces tetrodotoxin-sensitive NO release and relaxation that is inhibited by the Na+ channel blocker tetrodotoxin or sGC inhibitor 1H-(1,2,4)oxadiozolo(4,3-a)quinoxalin-1-one. Human BK(Ca) channels, transferred to Chinese hamster ovary cells via an adenoviral vector, and endogenous rat clitoral smooth muscle K+ current are activated by this PKG-dependent mechanism. Laser confocal microscopy reveals protein expression of BK(Ca) channels on clitoral smooth muscle cells; these cells exhibit BK(Ca) channel activity that is activated by both DEANO and sildenafil. We conclude that neurovascular derived NO causes clitoral relaxation via a PKG-dependent activation of BK(Ca) channels. The BK(Ca) channel is an appealing target for drug therapy of female erectile dysfunction.


Assuntos
Clitóris/fisiologia , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Clitóris/anatomia & histologia , Clitóris/irrigação sanguínea , Clitóris/inervação , Cricetinae , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Estimulação Elétrica , Eletrofisiologia , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Canais de Potássio Ativados por Cálcio de Condutância Alta , Lasers , Microdissecção , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/irrigação sanguínea , Músculo Liso/efeitos dos fármacos , Músculo Liso/inervação , Músculo Liso/fisiologia , Óxido Nítrico/biossíntese , Piperazinas/farmacologia , Canais de Potássio Cálcio-Ativados/genética , Purinas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Citrato de Sildenafila , Sulfonas
7.
Circ Res ; 91(6): 478-86, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12242265

RESUMO

Functional closure of the human ductus arteriosus (DA) is initiated within minutes of birth by O2 constriction. It occurs by an incompletely understood mechanism that is intrinsic to the DA smooth muscle cell (DASMC). We hypothesized that O2 alters the function of an O2 sensor (the mitochondrial electron transport chain, ETC) thereby increasing production of a diffusible redox-mediator (H2O2), thus triggering an effector mechanism (inhibition of DASMC voltage-gated K+ channels, Kv). O2 constriction was evaluated in 26 human DAs (12 female, aged 9+/-2 days) studied in their normal hypoxic state or after normoxic tissue culture. In fresh, hypoxic DAs, 4-aminopyridine (4-AP), a Kv inhibitor, and O2 cause similar constriction and K+ current inhibition (I(K)). Tissue culture for 72 hours, particularly in normoxia, causes ionic remodeling, characterized by decreased O2 and 4-AP constriction in DA rings and reduced O2- and 4-AP-sensitive I(K) in DASMCs. Remodeled DAMSCs are depolarized and express less O2-sensitive channels (including Kv2.1, Kv1.5, Kv9.3, Kv4.3, and BK(Ca)). Kv2.1 adenoviral gene-transfer significantly reverses ionic remodeling, partially restoring both the electrophysiological and tone responses to 4-AP and O2. In fresh DASMCs, ETC inhibitors (rotenone and antimycin) mimic hypoxia, increasing I(K) and reversing constriction to O2, but not phenylephrine. O2 increases, whereas hypoxia and ETC inhibitors decrease H2O2 production by altering mitochondrial membrane potential (DeltaPsim). H2O2, like O2, inhibits I(K) and depolarizes DASMCs. We conclude that O2 controls human DA tone by modulating the function of the mitochondrial ETC thereby varying DeltaPsim and the production of H2O2, which regulates DASMC Kv channel activity and DA tone.


Assuntos
Canal Arterial/fisiologia , Oxigênio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/fisiologia , 4-Aminopiridina/farmacologia , Canais de Potássio de Retificação Tardia , Relação Dose-Resposta a Droga , Canal Arterial/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Humanos , Hipóxia/fisiopatologia , Técnicas In Vitro , Recém-Nascido , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Oxirredução , Oxigênio/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Espécies Reativas de Oxigênio/metabolismo , Canais de Potássio Shab , Vasoconstrição/efeitos dos fármacos
8.
Circ Res ; 90(12): 1307-15, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-12089069

RESUMO

Renal arteries (RAs) dilate in response to hypoxia, whereas the pulmonary arteries (PAs) constrict. In the PA, O2 tension is detected by an unidentified redox sensor, which controls K+ channel function and thus smooth muscle cell (SMC) membrane potential and cytosolic calcium. Mitochondria are important regulators of cellular redox status and are candidate vascular O2 sensors. Mitochondria-derived activated oxygen species (AOS), like H2O2, can diffuse to the cytoplasm and cause vasodilatation by activating sarcolemmal K+ channels. We hypothesize that mitochondrial diversity between vascular beds explains the opposing responses to hypoxia in PAs versus RAs. The effects of hypoxia and proximal electron transport chain (pETC) inhibitors (rotenone and antimycin A) were compared in rat isolated arteries, vascular SMCs, and perfused organs. Hypoxia and pETC inhibitors decrease production of AOS and outward K+ current and constrict PAs while increasing AOS production and outward K+ current and dilating RAs. At baseline, lung mitochondria have lower respiratory rates and higher rates of AOS and H2O2 production. Similarly, production of AOS and H2O2 is greater in PA versus RA rings. SMC mitochondrial membrane potential is more depolarized in PAs versus RAs. These differences relate in part to the lower expression of proximal ETC components and greater expression of mitochondrial manganese superoxide dismutase in PAs versus RAs. Differential regulation of a tonically produced, mitochondria-derived, vasodilating factor, possibly H2O2, can explain the opposing effects of hypoxia on the PAs versus RAs. We conclude that the PA and RA have different mitochondria.


Assuntos
Mitocôndrias/fisiologia , Músculo Liso Vascular/fisiologia , Artéria Pulmonar/fisiologia , Artéria Renal/fisiologia , Animais , Hipóxia Celular , Células Cultivadas , Técnicas de Cultura , Transporte de Elétrons/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Rim/ultraestrutura , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/ultraestrutura , Mitocôndrias/ultraestrutura , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/ultraestrutura , Oxirredução , Canais de Potássio/fisiologia , Artéria Pulmonar/citologia , Circulação Pulmonar/efeitos dos fármacos , Circulação Pulmonar/fisiologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Artéria Renal/citologia , Circulação Renal/efeitos dos fármacos , Circulação Renal/fisiologia , Rotenona/farmacologia , Desacopladores/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA