Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Monit ; 14(5): 1417-27, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22460838

RESUMO

Lead in paint continues to be a threat to children's health in cities across the United States, which means there is an ongoing need for testing and analysis of paint. This ongoing analytical effort and especially development of new methods continue to drive the need for diagnostic testing materials that provide the analytical challenges of real-world paints. To this end, 31 different types of paint test materials were developed and prepared. Preparation of the materials included development of lead-containing paint films yielding an overall relative standard error for one individual test sample being less than 10%. The 31 diagnostic test materials prepared with these paint films included two lead pigments; lead concentrations from nominally 0 to 2.0 mg lead/cm(2) (0 to 5% lead by weight); overlayers of both "lead-free," oil-based and water-based paints; Al, Ba, and Mg as potential chemical interferents; red and black potential color interferents; and substrates of wood, metal, masonry, and plaster. These materials challenge each step in method development and evaluation, including paint sample collection and preparation, lead extraction, and measurement of solubilized lead. When the materials were used to test performance of a new lead-in-paint testing method based on extraction using a rotor/stator method and measurement using turbidimetry, the results agreed to within ±20% of the expected lead values for 30 out of 31 of the diagnostic test materials, thereby demonstrating their levels of quality and utility.


Assuntos
Poluentes Ambientais/análise , Chumbo/análise , Teste de Materiais/métodos , Pintura/análise , Monitoramento Ambiental/métodos , Humanos
2.
Environ Health Perspect ; 119(11): 1629-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21749965

RESUMO

BACKGROUND: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. OBJECTIVES: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. METHODS: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bioavailability and bioaccessibility. RESULTS: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R² = 0.92). Among physicochemical properties, combined concentrations of iron and aluminum accounted for 80% and 62% of the variability in estimates of RBA and bioaccessibility, respectively. CONCLUSION: The multifaceted approach described here yielded congruent estimates of As bioavailability and evidence of interrelations among physicochemical properties and bioavailability estimates.


Assuntos
Arseniatos/análise , Arseniatos/farmacocinética , Arsênio/análise , Arsênio/farmacocinética , Monitoramento Ambiental/métodos , Poluentes do Solo/farmacocinética , Animais , Arseniatos/química , Arseniatos/urina , Arsênio/química , Arsênio/urina , Biodegradação Ambiental , Disponibilidade Biológica , Monitoramento Ambiental/economia , Feminino , Metalurgia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Medição de Risco , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes do Solo/urina , Espectroscopia por Absorção de Raios X
3.
J Environ Monit ; 12(7): 1393-403, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20396827

RESUMO

Lead, which can be found in old paint, soil, and dust, has been clearly shown to have adverse health effects on the neurological systems of both children and adults. As part of an ongoing effort to reduce childhood lead poisoning, the US Environmental Protection Agency promulgated the Lead Renovation, Repair, and Painting Program (RRP) rule requiring that paint in target housing built prior to 1978 be tested for lead before any renovation, repair, or painting activities are initiated. This rule has led to a need for a rapid, relatively easy, and an inexpensive method for measuring lead in paint. This paper presents a new method for measuring lead extracted from paint that is based on turbidimetry. This method is applicable to paint that has been collected from a surface and extracted into 25% (v/v) of nitric acid. An aliquot of the filtered extract is mixed with an aliquot of solid potassium molybdate in 1 M ammonium acetate to form a turbid suspension of lead molybdate. The lead concentration is determined using a portable turbidity meter. This turbidimetric method has a response of approximately 0.9 NTU per microg lead per mL extract, with a range of 1-1000 Nephelometric Turbidity Units (NTUs). Precision at a concentration corresponding to the EPA-mandated decision point of 1 mg of lead per cm(2) is <2%. This method is insensitive to the presence of other metals common to paint, including Ba(2+), Ca(2+), Mg(2+), Fe(3+), Co(2+), Cu(2+), and Cd(2+), at concentrations of 10 mg mL(-1) or to Zn(2+) at 50 mg mL(-1). Analysis of 14 samples from six reference materials with lead concentrations near 1 mg cm(-2) yielded a correlation to inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of 0.97, with an average bias of 2.8%. Twenty-four sets of either 6 or 10 paint samples each were collected from different locations in old houses, a hospital, tobacco factory, and power station. Half of each set was analyzed using rotor/stator-25% (v/v) nitric acid extraction with measurement using the new turbidimetric method, and the other half was analyzed using microwave extraction and measurement by ICP-AES. The average relative percent difference between the turbidimetric method and the ICP-AES method for the 24 sets measured as milligrams of lead per cm(2) is -0.63 +/- 32.5%; the mean difference is -2.1 +/- 7.0 mg lead per cm(2). Non-parametric and parametric statistical tests on these data showed no difference in the results for the two procedures. At the federal regulated level of 1 mg of lead per cm(2) paint, this turbidimetric method meets the performance requirements for EPA's National Lead Laboratory Accreditation Program (NLLAP) of accuracy within +/-20% and has the potential to meet the performance specifications of EPA's RRP rule.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Chumbo/análise , Nefelometria e Turbidimetria , Pintura/análise , Poluentes Ambientais/química , Humanos , Chumbo/química , Intoxicação por Chumbo/prevenção & controle , Molibdênio/química , Ácido Nítrico/química
4.
J Expo Sci Environ Epidemiol ; 20(4): 359-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19293846

RESUMO

Community-based programs for assessing and mitigating environmental risks represent a challenge to participants because each brings a different level of understanding of the issues affecting the community. These programs often require the collaboration of several community sectors, such as community leaders, local governments and researchers. Once the primary concerns, community vulnerabilities and assets are identified, participants plan on how to address immediate actions, rank known risks, collect information to support decision making, set priorities and determine an evaluation process to assess the success of the actions taken. The evaluation process allows the community to develop new action plans based on the results obtained from earlier actions. Tracking the success of the community actions may be as simple as a visual/tangible result (e.g., cleaning a park) or as complex as the collection of specific measurements to track the reduction of toxic pollutants or to determine the presence of a specific contaminant. Recognizing that communities may need to perform measurements to meet their goals, this paper provides an overview of the available measurement methods for several chemicals and biologicals in relevant environmental samples to a community setting. The measurement methods are organized into several categories according to their level of complexity, estimated cost and sources. Community project technical advisors are encouraged to examine the objective(s) of the community to be addressed by a measurement collection effort and the level of confidence that needed for the data to make appropriate decisions. The tables provide a starting point for determining which measurement method may be appropriate for specific community needs.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Medição de Risco/métodos , Exposição Ambiental/efeitos adversos , Humanos , Características de Residência , Medição de Risco/economia
5.
J Environ Monit ; 11(1): 166-73, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19137153

RESUMO

Chronic exposure of children to lead can result in permanent physiological impairment. In adults, it can cause irritability, poor muscle coordination, and nerve damage to the sense organs and nerves controlling the body. Surfaces coated with lead-containing paints are potential sources of exposure to lead. In April 2008, the U.S. Environmental Protection Agency (EPA) finalized new requirements that would reduce exposure to lead hazards created by renovation, repair, and painting activities, which disturb lead-based paint. On-site, inexpensive identification of lead-based paint is required. Two steps have been taken to meet this challenge. First, this paper presents a new, highly efficient method for paint collection that is based on the use of a modified wood drill bit. Second, this paper presents a novel, one-step approach for quantitatively grinding and extracting lead from paint samples for subsequent lead determination. This latter method is based on the use of a high-revolutions per minute rotor with stator to break up the paint into approximately 50 micron-size particles. Nitric acid (25%, v/v) is used to extract the lead in <3 minutes. Recoveries are consistently >95% for real-world paints, National Institute of Standards and Technology's standard reference materials, and audit samples from the American Industrial Hygiene Association's Environmental Lead Proficiency Analytical Testing Program. This quantitative extraction procedure, when paired with quantitative paint sample collection and lead determination, may enable the development of a lead paint test kit that will meet the specifications of the final EPA rule.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Chumbo/análise , Pintura , Exposição Ambiental/legislação & jurisprudência , Chumbo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA