Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
mBio ; : e0127124, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869277

RESUMO

Life depends on a conserved set of chemical energy currencies that are relics of early biochemistry. One of these is ATP, a molecule that, when paired with a divalent metal ion such as Mg2+, can be hydrolyzed to support numerous cellular and molecular processes. Despite its centrality to extant biochemistry, it is unclear whether ATP supported the function of ancient enzymes. We investigate the evolutionary necessity of ATP by experimentally reconstructing an ancestral variant of the N2-reducing enzyme nitrogenase. The Proterozoic ancestor is predicted to be ~540-2,300 million years old, post-dating the Great Oxidation Event. Growth rates under nitrogen-fixing conditions are ~80% of those of wild type in Azotobacter vinelandii. In the extant enzyme, the hydrolysis of two MgATP is coupled to electron transfer to support substrate reduction. The ancestor has a strict requirement for ATP with no other nucleotide triphosphate analogs (GTP, ITP, and UTP) supporting activity. Alternative divalent metal ions (Fe2+, Co2+, and Mn2+) support activity with ATP but with diminished activities compared to Mg2+, similar to the extant enzyme. Additionally, it is shown that the ancestor has an identical efficiency in ATP hydrolyzed per electron transferred to the extant of two. Our results provide direct laboratory evidence of ATP usage by an ancient enzyme.IMPORTANCELife depends on energy-carrying molecules to power many sustaining processes. There is evidence that these molecules may predate the rise of life on Earth, but how and when these dependencies formed is unknown. The resurrection of ancient enzymes provides a unique tool to probe the enzyme's function and usage of energy-carrying molecules, shedding light on their biochemical origins. Through experimental reconstruction, this research investigates the ancestral dependence of a nitrogen-fixing enzyme on the energy carrier ATP, a requirement for function in the modern enzyme. We show that the resurrected ancestor does not have generalist nucleotide specificity. Rather, the ancestor has a strict requirement for ATP, like the modern enzyme, with similar function and efficiency. The findings elucidate the early-evolved necessity of energy-yielding molecules, delineating their role in ancient biochemical processes. Ultimately, these insights contribute to unraveling the intricate tapestry of evolutionary biology and the origins of life-sustaining dependencies.

2.
Elife ; 122023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36799917

RESUMO

The planetary biosphere is powered by a suite of key metabolic innovations that emerged early in the history of life. However, it is unknown whether life has always followed the same set of strategies for performing these critical tasks. Today, microbes access atmospheric sources of bioessential nitrogen through the activities of just one family of enzymes, nitrogenases. Here, we show that the only dinitrogen reduction mechanism known to date is an ancient feature conserved from nitrogenase ancestors. We designed a paleomolecular engineering approach wherein ancestral nitrogenase genes were phylogenetically reconstructed and inserted into the genome of the diazotrophic bacterial model, Azotobacter vinelandii, enabling an integrated assessment of both in vivo functionality and purified nitrogenase biochemistry. Nitrogenase ancestors are active and robust to variable incorporation of one or more ancestral protein subunits. Further, we find that all ancestors exhibit the reversible enzymatic mechanism for dinitrogen reduction, specifically evidenced by hydrogen inhibition, which is also exhibited by extant A. vinelandii nitrogenase isozymes. Our results suggest that life may have been constrained in its sampling of protein sequence space to catalyze one of the most energetically challenging biochemical reactions in nature. The experimental framework established here is essential for probing how nitrogenase functionality has been shaped within a dynamic, cellular context to sustain a globally consequential metabolism.


Assuntos
Azotobacter vinelandii , Nitrogenase , Nitrogenase/química , Nitrogenase/genética , Nitrogenase/metabolismo , Fixação de Nitrogênio , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Sequência de Aminoácidos , Nitrogênio/metabolismo
3.
Biochemistry ; 61(19): 2131-2137, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103672

RESUMO

Mo-nitrogenase catalyzes the challenging N2-to-NH3 reduction. This complex reaction proceeds through a series of intermediate states (En) of its active site FeMo-cofactor. An understanding of the kinetics of the conversion between En states is central to defining the mechanism of nitrogenase. Here, rate constants of key steps have been determined through a steady-state kinetic model with fits to experimental data. The model reveals that the rate for H2 formation from the early electron populated state E2(2H) is much slower than that from the more reduced E4(4H) state. Further, it is found that the competing reactions of H2 formation and N2 binding at the E4(4H) state occur with equal rate constants. The H2-dependent reverse reaction of the N2 binding step is found to have a rate constant of 5.5 ± 0.2 (atm H2)-1 s-1 (7.2 ± 0.3 (mM H2)-1 s-1). Importantly, the reduction of N2 bound to FeMo-cofactor proceeds with a rate constant of 1 ± 0.1 s-1, revealing a previously unrecognized slow step in the Mo-nitrogenase catalytic cycle associated with the chemical transformation of N2 to 2 NH3. Finally, the populations of En states under different reaction conditions are predicted, providing a powerful tool to guide the spectroscopic and mechanistic studies of Mo-nitrogenase.


Assuntos
Molibdoferredoxina , Nitrogenase , Catálise , Cinética , Molibdoferredoxina/metabolismo , Nitrogenase/química , Oxirredução
4.
Inorg Chem ; 61(14): 5459-5464, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35357830

RESUMO

The nitrogenase active-site cofactor must accumulate 4e-/4H+ (E4(4H) state) before N2 can bind and be reduced. Earlier studies demonstrated that this E4(4H) state stores the reducing-equivalents as two hydrides, with the cofactor metal-ion core formally at its resting-state redox level. This led to the understanding that N2 binding is mechanistically coupled to reductive-elimination of the two hydrides that produce H2. The state having acquired 2e-/2H+ (E2(2H)) correspondingly contains one hydride with a resting-state core redox level. How the cofactor accommodates addition of the first e-/H+ (E1(H) state) is unknown. The Fe-nitrogenase FeFe-cofactor was used to address this question because it is EPR-active in the E1(H) state, unlike the FeMo-cofactor of Mo-nitrogenase, thus allowing characterization by EPR spectroscopy. The freeze-trapped E1(H) state of Fe-nitrogenase shows an S = 1/2 EPR spectrum with g = [1.965, 1.928, 1.779]. This state is photoactive, and under 12 K cryogenic intracavity, 450 nm photolysis converts to a new and likewise photoactive S = 1/2 state (denoted E1(H)*) with g = [2.009, 1.950, 1.860], which results in a photostationary state, with E1(H)* relaxing to E1(H) at temperatures above 145 K. An H/D kinetic isotope effect of 2.4 accompanies the 12 K E1(H)/E1(H)* photointerconversion. These observations indicate that the addition of the first e-/H+ to the FeFe-cofactor of Fe-nitrogenase produces an Fe-bound hydride, not a sulfur-bound proton. As a result, the cluster metal-ion core is formally one-electron oxidized relative to the resting state. It is proposed that this behavior applies to all three nitrogenase isozymes.


Assuntos
Elétrons , Nitrogenase , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Metais/metabolismo , Molibdoferredoxina/metabolismo , Nitrogenase/química , Oxirredução
5.
Mol Microbiol ; 117(5): 1080-1088, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220629

RESUMO

Azotobacter vinelandii produces three genetically distinct, but structurally and mechanistically similar nitrogenase isozymes designated as Mo-dependent, V-dependent, or Fe-only based on the heterometal contained within their associated active site cofactors. These catalytic cofactors, which provide the site for N2 binding and reduction, are, respectively, designated as FeMo-cofactor, FeV-cofactor, and FeFe-cofactor. Fe-only nitrogenase is a poor catalyst for N2 fixation, when compared to the Mo-dependent and V-dependent nitrogenases and is only produced when neither Mo nor V is available. Under conditions favoring the production of Fe-only nitrogenase a gene product designated AnfO preserves the fidelity of Fe-only nitrogenase by preventing the misincorporation of FeV-cofactor, which results in the accumulation of a hybrid enzyme that cannot reduce N2 . These results are interpreted to indicate that AnfO controls the fidelity of Fe-only nitrogenase maturation during the physiological transition from conditions that favor V-dependent nitrogenase utilization to Fe-only nitrogenase utilization to support diazotrophic growth.


Assuntos
Azotobacter vinelandii , Nitrogenase , Azotobacter vinelandii/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Molibdoferredoxina/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo
6.
J Inorg Biochem ; 213: 111278, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068967

RESUMO

Three known nitrogenase isozymes, Mo-, V-, and Fe-, catalyze biological reduction of dinitrogen (N2) to ammonia (NH3). All three utilize the same reductive elimination mechanism: an intermediate with two metal-bound hydrides reductively-eliminates hydrogen gas (H2) in a reaction coupled to binding and activation of N2. Nonetheless, the three isozymes show dramatically different relative rates of H2 formation and N2 reduction, revealing important differences in reactivity with substrates. Carbon monoxide (CO) has been characterized as both an inhibitor and substrate for Mo- and V­nitrogenases, but not for the Fe­nitrogenase. Here, we present a comparative study of the reactivity of the three isozymes with CO, examining CO both as a substrate and as an inhibitor of proton (H+) reduction under steady-state conditions. For Mo­nitrogenase, there is neither detectable reduction of CO nor inhibition of H+ reduction. Fe- and V­nitrogenase show CO reduction and inhibition of H+ reduction that depends on the CO partial pressure. For V­nitrogenase, ethylene (C2H4) is the major reduction product with a maximum specific activity of ~7.5 nmol C2H4/nmol VFe protein/min at 1 atm CO. The major product of CO reduction for Fe­nitrogenase is methane (CH4) with a maximum specific activity of ~4.8 nmol CH4/nmol FeFe protein/min at 0.05 atm CO. The rate of CH4 production by Fe­nitrogenase progressively increases to a maximum at 0.05 atm CO and then declines by ~90% with increasing CO partial pressure up to 1 atm. CO does not inhibit proton reduction in Mo­nitrogenase but shows 16% inhibition for V­nitrogenase and 35% for Fe­nitrogenase.


Assuntos
Monóxido de Carbono/química , Hidrogênio/química , Ferro/química , Molibdênio/química , Nitrogenase/química , Vanádio/química , Catálise , Oxirredução
7.
Chem Rev ; 120(12): 5082-5106, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32176472

RESUMO

Nitrogenase is the enzyme that catalyzes biological N2 reduction to NH3. This enzyme achieves an impressive rate enhancement over the uncatalyzed reaction. Given the high demand for N2 fixation to support food and chemical production and the heavy reliance of the industrial Haber-Bosch nitrogen fixation reaction on fossil fuels, there is a strong need to elucidate how nitrogenase achieves this difficult reaction under benign conditions as a means of informing the design of next generation synthetic catalysts. This Review summarizes recent progress in addressing how nitrogenase catalyzes the reduction of an array of substrates. New insights into the mechanism of N2 and proton reduction are first considered. This is followed by a summary of recent gains in understanding the reduction of a number of other nitrogenous compounds not considered to be physiological substrates. Progress in understanding the reduction of a wide range of C-based substrates, including CO and CO2, is also discussed, and remaining challenges in understanding nitrogenase substrate reduction are considered.


Assuntos
Nitrogenase/metabolismo , Biocatálise , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Nitrogênio/química , Nitrogênio/metabolismo , Nitrogenase/química , Oxirredução , Especificidade por Substrato
8.
Biochemistry ; 58(30): 3293-3301, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31283201

RESUMO

Three genetically distinct, but structurally similar, isozymes of nitrogenase catalyze biological N2 reduction to 2NH3: Mo-, V-, and Fe-nitrogenase, named respectively for the metal (M) in their active site metallocofactors (metal-ion composition, MFe7). Studies of the Mo-enzyme have revealed key aspects of its mechanism for N2 binding and reduction. Central to this mechanism is accumulation of four electrons and protons on its active site metallocofactor, called FeMo-co, as metal bound hydrides to generate the key E4(4H) ("Janus") state. N2 binding/reduction in this state is coupled to reductive elimination (re) of the two hydrides as H2, the forward direction of a reductive-elimination/oxidative-addition (re/oa) equilibrium. A recent study demonstrated that Fe-nitrogenase follows the same re/oa mechanism, as particularly evidenced by HD formation during turnover under N2/D2. Kinetic analysis revealed that Mo- and Fe-nitrogenases show similar rate constants for hydrogenase-like H2 formation by hydride protonolysis (kHP) but significant differences in the rate constant for H2 re with N2 binding/reduction (kre). We now report that V-nitrogenase also exhibits HD formation during N2/D2 turnover (and H2 inhibition of N2 reduction), thereby establishing the re/oa equilibrium as a universal mechanism for N2 binding and activation among the three nitrogenases. Kinetic analysis further reveals that differences in catalytic efficiencies do not stem from significant differences in the rate constant (kHP) for H2 production by the hydrogenase-like side reaction but directly arise from the differences in the rate constant (kre) for the re of H2 coupled to N2 binding/reduction, which decreases in the order Mo > V > Fe.


Assuntos
Ferro/metabolismo , Molibdênio/metabolismo , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Azotobacter vinelandii/enzimologia , Elétrons , Ferro/química , Molibdênio/química , Nitrogênio/química , Nitrogenase/química , Oxirredução
9.
Biochemistry ; 57(39): 5706-5714, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30183278

RESUMO

The enzyme nitrogenase catalyzes the reduction of N2 to ammonia but also that of protons to H2. These reactions compete at the mechanistically central 'Janus' intermediate, denoted E4(4H), which has accumulated 4e-/4H+ as two bridging Fe-H-Fe hydrides on the active-site cofactor. This state can lose e-/H+ by hydride protonolysis (HP) or become activated by reductive elimination ( re) of the two hydrides and bind N2 with H2 loss, yielding an E4(2N2H) state that goes on to generate two NH3 molecules. Thus, E4(4H) represents the key branch point for these competing reactions. Here, we present a steady-state kinetic analysis that precisely describes this competition. The analysis demonstrates that steady-state, high-electron flux turnover overwhelmingly populates the E4 states at the expense of less reduced states, quenching HP at those states. The ratio of rate constants for E4(4H) hydride protonolysis ( kHP) versus reductive elimination ( kre) provides a sensitive measure of competition between these two processes and thus is a central parameter of nitrogenase catalysis. Analysis of measurements with the three nitrogenase variants (Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase) reveals that at a fixed N2 pressure their tendency to productively react with N2 to produce two NH3 molecules and an accompanying H2, rather than diverting electrons to the side reaction, HP production of H2, decreases with their ratio of rate constants, k re/ kHP: Mo-nitrogenase, 5.1 atm-1; V-nitrogenase, 2 atm-1; and Fe-nitrogenase, 0.77 atm-1 (namely, in a 1:0.39:0.15 ratio). Moreover, the lower catalytic effectiveness of the alternative nitrogenases, with more H2 production side reaction, is not caused by a higher kHP but by a significantly lower k re.


Assuntos
Hidrogênio/química , Nitrogênio/química , Nitrogenase/química , Azotobacter vinelandii/enzimologia , Catálise , Ensaios Enzimáticos , Ferro/química , Cinética , Molibdênio/química , Nitrogenase/classificação , Nitrogenase/isolamento & purificação , Oxirredução , Vanádio/química
10.
Nat Microbiol ; 3(3): 281-286, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335552

RESUMO

Methane (CH4) is a potent greenhouse gas that is released from fossil fuels and is also produced by microbial activity, with at least one billion tonnes of CH4 being formed and consumed by microorganisms in a single year 1 . Complex methanogenesis pathways used by archaea are the main route for bioconversion of carbon dioxide (CO2) to CH4 in nature2-4. Here, we report that wild-type iron-iron (Fe-only) nitrogenase from the bacterium Rhodopseudomonas palustris reduces CO2 simultaneously with nitrogen gas (N2) and protons to yield CH4, ammonia (NH3) and hydrogen gas (H2) in a single enzymatic step. The amount of CH4 produced by purified Fe-only nitrogenase was low compared to its other products, but CH4 production by this enzyme in R. palustris was sufficient to support the growth of an obligate CH4-utilizing Methylomonas strain when the two microorganisms were grown in co-culture, with oxygen (O2) added at intervals. Other nitrogen-fixing bacteria that we tested also formed CH4 when expressing Fe-only nitrogenase, suggesting that this is a general property of this enzyme. The genomes of 9% of diverse nitrogen-fixing microorganisms from a range of environments encode Fe-only nitrogenase. Our data suggest that active Fe-only nitrogenase, present in diverse microorganisms, contributes CH4 that could shape microbial community interactions.


Assuntos
Dióxido de Carbono/metabolismo , Ferro/metabolismo , Metano/biossíntese , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Rodopseudomonas/enzimologia , Amônia/metabolismo , Hidrogênio/metabolismo , Microbiota , Prótons
11.
Biochemistry ; 57(5): 701-710, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29283553

RESUMO

Of the three forms of nitrogenase (Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase), Fe-nitrogenase has the poorest ratio of N2 reduction relative to H2 evolution. Recent work on the Mo-nitrogenase has revealed that reductive elimination of two bridging Fe-H-Fe hydrides on the active site FeMo-cofactor to yield H2 is a key feature in the N2 reduction mechanism. The N2 reduction mechanism for the Fe-nitrogenase active site FeFe-cofactor was unknown. Here, we have purified both component proteins of the Fe-nitrogenase system, the electron-delivery Fe protein (AnfH) plus the catalytic FeFe protein (AnfDGK), and established its mechanism of N2 reduction. Inductively coupled plasma optical emission spectroscopy and mass spectrometry show that the FeFe protein component does not contain significant amounts of Mo or V, thus ruling out a requirement of these metals for N2 reduction. The fully functioning Fe-nitrogenase system was found to have specific activities for N2 reduction (1 atm) of 181 ± 5 nmol NH3 min-1 mg-1 FeFe protein, for proton reduction (in the absence of N2) of 1085 ± 41 nmol H2 min-1 mg-1 FeFe protein, and for acetylene reduction (0.3 atm) of 306 ± 3 nmol C2H4 min-1 mg-1 FeFe protein. Under turnover conditions, N2 reduction is inhibited by H2 and the enzyme catalyzes the formation of HD when presented with N2 and D2. These observations are explained by the accumulation of four reducing equivalents as two metal-bound hydrides and two protons at the FeFe-cofactor, with activation for N2 reduction occurring by reductive elimination of H2.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Hidrogênio/metabolismo , Nitrogênio/metabolismo , Oxirredutases/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Coenzimas/metabolismo , Ferro/análise , Modelos Químicos , Molibdênio/análise , Oxirredução , Subunidades Proteicas , Proteínas Recombinantes/metabolismo , Vanádio/análise
12.
Bioelectrochemistry ; 120: 104-109, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29223886

RESUMO

Nitrogenases catalyze biological dinitrogen (N2) reduction to ammonia (NH3), and also reduce a number of non-physiological substrates, including carbon dioxide (CO2) to formate (HCOO-) and methane (CH4). Three versions of nitrogenase are known (Mo-, V-, and Fe-nitrogenase), each showing different reactivities towards various substrates. Normally, electrons for substrate reduction are delivered by the Fe protein component of nitrogenase, with energy coming from the hydrolysis of 2 ATP to 2 ADP+2 Pi for each electron transferred. Recently, it has been demonstrated that energy and electrons can be delivered from an electrode to the catalytic nitrogenase MoFe-protein without the need for Fe protein or ATP hydrolysis. Here, it is demonstrated that both the MoFe- and FeFe-protein can be immobilized as a polymer layer on an electrode and that electron transfer mediated by cobaltocene can drive CO2 reduction to formate in this system. It was also found that the FeFe-protein diverts a greater percentage of electrons to CO2 reduction versus proton reduction compared to the MoFe-protein. Quantification of electron flow to products exhibited Faradaic efficiencies of CO2 conversion to formate of 9% for MoFe protein and 32% for FeFe-protein, with the remaining electrons going to proton reduction to make H2.


Assuntos
Azotobacter vinelandii/enzimologia , Dióxido de Carbono/metabolismo , Molibdoferredoxina/metabolismo , Oxirredutases/metabolismo , Trifosfato de Adenosina/metabolismo , Azotobacter vinelandii/metabolismo , Catálise , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/metabolismo , Hidrólise , Oxirredução
13.
Proc Natl Acad Sci U S A ; 113(36): 10163-7, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551090

RESUMO

Nitrogenase is an ATP-requiring enzyme capable of carrying out multielectron reductions of inert molecules. A purified remodeled nitrogenase containing two amino acid substitutions near the site of its FeMo cofactor was recently described as having the capacity to reduce carbon dioxide (CO2) to methane (CH4). Here, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of light-driven CO2 reduction to CH4 in vivo using this remodeled nitrogenase. Conversion of CO2 to CH4 by R. palustris required constitutive expression of nitrogenase, which was achieved by using a variant of the transcription factor NifA that is able to activate expression of nitrogenase under all growth conditions. Also, light was required for generation of ATP by cyclic photophosphorylation. CH4 production by R. palustris could be controlled by manipulating the distribution of electrons and energy available to nitrogenase. This work shows the feasibility of using microbes to generate hydrocarbons from CO2 in one enzymatic step using light energy.


Assuntos
Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Metano/biossíntese , Nitrogenase/genética , Fotossíntese/genética , Rodopseudomonas/genética , Trifosfato de Adenosina/biossíntese , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Expressão Gênica , Engenharia Genética/métodos , Cinética , Luz , Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Oxirredução , Fotofosforilação , Rodopseudomonas/enzimologia , Rodopseudomonas/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
PLoS One ; 11(7): e0159242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27416037

RESUMO

Single-stranded DNA binding (SSB) proteins coordinate DNA replication, repair, and recombination and are critical for maintaining genomic integrity. SSB binds to single-stranded DNA (ssDNA) rapidly and with very high affinity making it a useful molecular tool to detect free ssDNA in solution. We have labeled SSB from Plasmodium falciparum (Pf-SSB) with the MDCC (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)-carbonyl)coumarin) fluorophore which yields a four-fold increase in fluorescence upon binding to ssDNA. Pf-SSBMDCC binding to DNA is unaffected by NaCl or Mg2+ concentration and does not display salt-dependent changes in DNA binding modes or cooperative binding on long DNA substrates. These features are unique to Pf-SSB, making it an ideal tool to probe the presence of free ssDNA in any biochemical reaction. Using this Pf-SSBMDCC probe as a sensor for free ssDNA, we have investigated the clearing of preformed yeast Rad51 nucleoprotein filaments by the Srs2 helicase during HR. Our studies provide a rate for the disassembly of the Rad51 filament by full length Srs2 on long ssDNA substrates. Mutations in the conserved 2B domain in the homologous bacterial UvrD, Rep and PcrA helicases show an enhancement of DNA unwinding activity, but similar mutations in Srs2 do not affect its DNA unwinding or Rad51 clearing properties. These studies showcase the utility of the Pf-SSB probe in mechanistic investigation of enzymes that function in DNA metabolism.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Plasmodium falciparum/metabolismo , Rad51 Recombinase/metabolismo , Cumarínicos/metabolismo , Sondas de DNA , Fluorescência , Nucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Science ; 352(6284): 448-50, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102481

RESUMO

The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.


Assuntos
Compostos de Cádmio/química , Molibdoferredoxina/química , Nitrogênio/química , Nitrogenase/química , Sulfetos/química , Trifosfato de Adenosina/química , Amônia/química , Catálise/efeitos da radiação , Hidrólise/efeitos da radiação , Luz , Nanopartículas/química , Fixação de Nitrogênio , Nitrogenase/efeitos da radiação , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA