Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hosp Infect ; 113: 1-9, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33932556

RESUMO

BACKGROUND: Carbapenemase-producing Enterobacterales (CPE) can colonize the gut and are of major clinical concern. Identification of CPE colonization is problematic; there is no gold-standard detection method, and the effects of antibiotic exposure and microbiota dysbiosis on detection are unknown. AIM: Based on a national survey we selected four CPE screening assays in common use. We used a clinically reflective in vitro model of human gut microbiota to investigate the performance of each test to detect three different CPE strains under different, clinically relevant antibiotic exposures. METHODS: Twelve gut models were seeded with a pooled faecal slurry and exposed to CPE either before, after, concomitant with, or in the absence of piperacillin-tazobactam (358 mg/L, 3 × daily, seven days). Total Enterobacterales and CPE populations were enumerated daily. Regular screening for CPE was performed using Cepheid Xpert® Carba-R molecular test, and with Brilliance™ CRE, Colorex™ mSuperCARBA and CHROMID® CARBA SMART agars. FINDINGS: Detection of CPE when the microbiota are intact is problematic. Antibiotic exposure disrupts microbiota populations and allows CPE proliferation, increasing detection. The performances of assays varied, particularly with respect to different CPE strains. The Cepheid assay performed better than the three agar methods for detecting a low level of CPE within an intact microbiota, although performance of all screening methods was comparable when CPE populations increased in a disrupted microbiota. CONCLUSION: CPE strains differed in their dynamics of colonization in an in vitro gut model and in their subsequent response to antibiotic exposure. This affected detection by molecular and screening methods, which has implications for the sensitivity of CPE screening in healthcare settings.


Assuntos
Infecções por Enterobacteriaceae , Microbioma Gastrointestinal , Microbiota , Proteínas de Bactérias , Técnicas Bacteriológicas , Disbiose/diagnóstico , Infecções por Enterobacteriaceae/diagnóstico , Humanos , Sensibilidade e Especificidade , beta-Lactamases
2.
Aliment Pharmacol Ther ; 44(7): 662-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464984

RESUMO

BACKGROUND: Short-chain fatty acids (SCFA) produced through fermentation of nondigestible carbohydrates by the gut microbiota are associated with positive metabolic effects. However, well-controlled trials are limited in humans. AIMS: To develop a methodology to deliver SCFA directly to the colon, and to optimise colonic propionate delivery in humans, to determine its role in appetite regulation and food intake. METHODS: Inulin SCFA esters were developed and tested as site-specific delivery vehicles for SCFA to the proximal colon. Inulin propionate esters containing 0-61 wt% (IPE-0-IPE-61) propionate were assessed in vitro using batch faecal fermentations. In a randomised, controlled, crossover study, with inulin as control, ad libitum food intake (kcal) was compared after 7 days on IPE-27 or IPE-54 (10 g/day all treatments). Propionate release was determined using (13) C-labelled IPE variants. RESULTS: In vitro, IPE-27-IPE-54 wt% propionate resulted in a sevenfold increase in propionate production compared with inulin (P < 0.05). In vivo, IPE-27 led to greater (13) C recovery in breath CO2 than IPE-54 (64.9 vs. 24.9%, P = 0.001). IPE-27 also led to a reduction in energy intake during the ad libitum test meal compared with both inulin (439.5 vs. 703.9 kcal, P = 0.025) and IPE-54 (439.5 vs. 659.3 kcal, P = 0.025), whereas IPE-54 was not significantly different from inulin control. CONCLUSIONS: IPE-27 significantly reduced food intake suggesting colonic propionate plays a role in appetite regulation. Inulin short-chain fatty acid esters provide a novel tool for probing the diet-gut microbiome-host metabolism axis in humans.


Assuntos
Colo/metabolismo , Ácidos Graxos Voláteis/administração & dosagem , Inulina/administração & dosagem , Adulto , Estudos Cross-Over , Ingestão de Alimentos , Ingestão de Energia , Ésteres/química , Ácidos Graxos Voláteis/metabolismo , Fezes , Fermentação , Humanos , Masculino , Pessoa de Meia-Idade , Propionatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA