Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Commun ; 12(1): 1019, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589637

RESUMO

Genome-wide variation in introgression rates across hybrid zones offers a powerful opportunity for studying population differentiation. One poorly understood pattern of introgression is the geographic displacement of a trait implicated in lineage divergence from genome-wide population boundaries. While difficult to interpret, this pattern can facilitate the dissection of trait genetic architecture because traits become uncoupled from their ancestral genomic background. We studied an example of trait displacement generated by the introgression of head plumage coloration from personata to alba subspecies of the white wagtail. A previous study of their hybrid zone in Siberia revealed that the geographic transition in this sexual signal that mediates assortative mating was offset from other traits and genetic markers. Here we show that head plumage is associated with two small genetic regions. Despite having a simple genetic architecture, head plumage inheritance is consistent with partial dominance and epistasis, which could contribute to its asymmetric introgression.


Assuntos
Introgressão Genética , Genoma , Passeriformes/genética , Pigmentação/genética , Característica Quantitativa Herdável , Animais , Quimera , Cor , Epistasia Genética , Plumas/anatomia & histologia , Plumas/metabolismo , Feminino , Masculino , Passeriformes/anatomia & histologia , Passeriformes/classificação , Sibéria , Uzbequistão
2.
Genome Biol Evol ; 12(6): 871-877, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396636

RESUMO

First inspired by the seminal work of Lewontin and Krakauer (1973. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74(1):175-195.) and Maynard Smith and Haigh (1974. The hitch-hiking effect of a favourable gene. Genet Res. 23(1):23-35.), genomic scans for positive selection remain a widely utilized tool in modern population genomic analysis. Yet, the relative frequency and genomic impact of selective sweeps have remained a contentious point in the field for decades, largely owing to an inability to accurately identify their presence and quantify their effects-with current methodologies generally being characterized by low true-positive rates and/or high false-positive rates under many realistic demographic models. Most of these approaches are based on Wright-Fisher assumptions and the Kingman coalescent and generally rely on detecting outlier regions which do not conform to these neutral expectations. However, previous theoretical results have demonstrated that selective sweeps are well characterized by an alternative class of model known as the multiple-merger coalescent. Taken together, this suggests the possibility of not simply identifying regions which reject the Kingman, but rather explicitly testing the relative fit of a genomic window to the multiple-merger coalescent. We describe the advantages of such an approach, which owe to the branching structure differentiating selective and neutral models, and demonstrate improved power under certain demographic scenarios relative to a commonly used approach. However, regions of the demographic parameter space continue to exist in which neither this approach nor existing methodologies have sufficient power to detect selective sweeps.


Assuntos
Genômica/métodos , Modelos Genéticos , Seleção Genética , Humanos
3.
Evolution ; 74(5): 992-1001, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32233086

RESUMO

The within-host evolutionary dynamics of tuberculosis (TB) remain unclear, and underlying biological characteristics render standard population genetic approaches based upon the Wright-Fisher model largely inappropriate. In addition, the compact genome combined with an absence of recombination is expected to result in strong purifying selection effects. Thus, it is imperative to establish a biologically relevant evolutionary framework incorporating these factors in order to enable an accurate study of this important human pathogen. Further, such a model is critical for inferring fundamental evolutionary parameters related to patient treatment, including mutation rates and the severity of infection bottlenecks. We here implement such a model and infer the underlying evolutionary parameters governing within-patient evolutionary dynamics. Results demonstrate that the progeny skew associated with the clonal nature of TB severely reduces genetic diversity and that the neglect of this parameter in previous studies has led to significant mis-inference of mutation rates. As such, our results suggest an underlying de novo mutation rate that is considerably faster than previously inferred, and a progeny distribution differing significantly from Wright-Fisher assumptions. This inference represents a more appropriate evolutionary null model, against which the periodic effects of positive selection, associated with drug-resistance for example, may be better assessed.


Assuntos
Evolução Biológica , Mutação , Mycobacterium tuberculosis/genética , Seleção Genética , Modelos Genéticos
4.
Heredity (Edinb) ; 124(1): 1-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31399719

RESUMO

By combining well-established population genetic theory with high-throughput sequencing data from natural populations, major strides have recently been made in understanding how, why, and when vertebrate populations evolve crypsis. Here, we focus on background matching, a particular facet of crypsis that involves the ability of an organism to conceal itself through matching its color to the surrounding environment. While interesting in and of itself, the study of this phenotype has also provided fruitful population genetic insights into the interplay of strong positive selection with other evolutionary processes. Specifically, and predicated upon the findings of previous candidate gene association studies, a primary focus of this recent literature involves the realization that the inference of selection from DNA sequence data first requires a robust model of population demography in order to identify genomic regions which do not conform to neutral expectations. Moreover, these demographic estimates provide crucial information about the origin and timing of the onset of selective pressures associated with, for example, the colonization of a novel environment. Furthermore, such inference has revealed crypsis to be a particularly useful phenotype for investigating the interplay of migration and selection-with examples of gene flow constraining rates of adaptation, or alternatively providing the genetic variants that may ultimately sweep through the population. Here, we evaluate the underlying evidence, review the strengths and weaknesses of the many population genetic methodologies used in these studies, and discuss how these insights have aided our general understanding of the evolutionary process.


Assuntos
Evolução Biológica , Genética Populacional , Lebres/genética , Lagartos/genética , Peromyscus/genética , Pigmentação/genética , Adaptação Fisiológica/genética , Animais , Fluxo Gênico , Fenótipo , Seleção Genética
5.
CBE Life Sci Educ ; 18(3): ar35, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31397651

RESUMO

Gender gaps in exam scores or final grades are common in introductory college science and engineering classrooms, with women underperforming relative to men with the same admission test scores or college grade point averages. After failing to close a historically documented gender gap in a large introductory biology course using interventions targeted at training a growth mindset, we implemented interventions designed to reduce student test anxiety. We combined evidence-based exercises based on expressive writing and on reappraising physiological arousal. We also used a valid measure to quantify test anxiety at the start and end of the course. This instrument measures an individual's self-declared or perceived test anxiety-also called trait anxiety-but not the immediate or "state" anxiety experienced during an actual exam. Consistent with previous reports in the literature, we found that women in this population declared much higher test anxiety than men and that students who declared higher test anxiety had lower exam scores than students who declared lower test anxiety. Although the test anxiety interventions had no impact on the level of self-declared trait anxiety, they did significantly increase student exam performance. The treatment benefits occurred in both men and women. These data suggest that 1) a combination of interventions based on expressive writing and reappraising physiological arousal can be a relatively easy manner to boost exam performance in a large-enrollment science, technology, engineering, and mathematics (STEM) course and encourage emotion regulation; 2) women are more willing than men to declare that they are anxious about exams, but men and women may actually experience the same level of anxiety during the exam itself; and 3) women are underperforming in STEM courses for reasons other than gender-based differences in mindset or test anxiety.


Assuntos
Ansiedade/psicologia , Currículo , Avaliação Educacional , Engenharia/educação , Matemática/educação , Ciência/educação , Estudantes/psicologia , Tecnologia/educação , Feminino , Humanos , Masculino , Fatores Sexuais , Universidades , Redação
6.
Genetics ; 211(3): 1019-1028, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651284

RESUMO

The recent increase in time-series population genomic data from experimental, natural, and ancient populations has been accompanied by a promising growth in methodologies for inferring demographic and selective parameters from such data. However, these methods have largely presumed that the populations of interest are well-described by the Kingman coalescent. In reality, many groups of organisms, including viruses, marine organisms, and some plants, protists, and fungi, typified by high variance in progeny number, may be best characterized by multiple-merger coalescent models. Estimation of population genetic parameters under Wright-Fisher assumptions for these organisms may thus be prone to serious mis-inference. We propose a novel method for the joint inference of demography and selection under the Ψ-coalescent model, termed Multiple-Merger Coalescent Approximate Bayesian Computation, or MMC-ABC. We first demonstrate mis-inference under the Kingman, and then exhibit the superior performance of MMC-ABC under conditions of skewed offspring distributions. In order to highlight the utility of this approach, we reanalyzed previously published drug-selection lines of influenza A virus. We jointly inferred the extent of progeny-skew inherent to viral replication and identified putative drug-resistance mutations.


Assuntos
Modelos Genéticos , Polimorfismo Genético , Seleção Genética , Viés , Farmacorresistência Viral/genética , Evolução Molecular , Vírus da Influenza A/genética
7.
PLoS Genet ; 14(12): e1007859, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30592709

RESUMO

Since the initial description of the genomic patterns expected under models of positive selection acting on standing genetic variation and on multiple beneficial mutations-so-called soft selective sweeps-researchers have sought to identify these patterns in natural population data. Indeed, over the past two years, large-scale data analyses have argued that soft sweeps are pervasive across organisms of very different effective population size and mutation rate-humans, Drosophila, and HIV. Yet, others have evaluated the relevance of these models to natural populations, as well as the identifiability of the models relative to other known population-level processes, arguing that soft sweeps are likely to be rare. Here, we look to reconcile these opposing results by carefully evaluating three recent studies and their underlying methodologies. Using population genetic theory, as well as extensive simulation, we find that all three examples are prone to extremely high false-positive rates, incorrectly identifying soft sweeps under both hard sweep and neutral models. Furthermore, we demonstrate that well-fit demographic histories combined with rare hard sweeps serve as the more parsimonious explanation. These findings represent a necessary response to the growing tendency of invoking parameter-heavy, assumption-laden models of pervasive positive selection, and neglecting best practices regarding the construction of proper demographic null models.


Assuntos
Genética Populacional , Modelos Genéticos , Seleção Genética , Animais , Simulação por Computador , Drosophila melanogaster/genética , Variação Genética , HIV/genética , Humanos , Modelos Estatísticos , Mutação
8.
Mol Phylogenet Evol ; 120: 183-195, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29246816

RESUMO

Generally, genotypes and phenotypes are expected to be spatially congruent; however, in widespread species complexes with few barriers to dispersal, multiple contact zones, and limited reproductive isolation, discordance between phenotypes and phylogeographic groups is more probable. Wagtails (Motacilla) are a genus of birds with striking plumage pattern variation across the Old World. Up to 13 subspecies are recognized within a single species, yet previous studies using mitochondrial DNA have supported polyphyletic phylogeographic groups that are inconsistent with subspecies plumage characteristics. In this study, we investigate the link between phenotypes and genotype by taking a phylogenetic approach. We use genome-wide SNPs, nuclear introns, and mitochondrial DNA to estimate population structure, isolation by distance, and species relationships. Together, our genetic sampling includes complete species-level sampling and comprehensive coverage of the three most phenotypically diverse Palearctic species. Our study provides strong evidence for species-level patterns of differentiation, however population-level differentiation is less pronounced. SNPs provide a robust estimate of species-level relationships, which are mostly corroborated by a combined analysis of mtDNA and nuclear introns (the first time-calibrated species tree for the genus). However, the mtDNA tree is strongly incongruent and is considered to misrepresent the species phylogeny. The extant wagtail lineages originated during the Pliocene and the Eurasian lineage underwent rapid diversification during the Pleistocene. Three of four widespread Eurasian species exhibit an east-west divide that contradicts both subspecies taxonomy and phenotypic variation. Indeed, SNPs fail to distinguish between phenotypically distinct subspecies within the M. alba and M. flava complexes, and instead support geographical regions, each of which is home to two or more different looking subspecies. This is a major step towards our understanding of wagtail phylogeny compared to previous analyses of fewer species and considerably less sequence data.


Assuntos
Variação Genética , Passeriformes/genética , Animais , Núcleo Celular/genética , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Genótipo , Passeriformes/classificação , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
9.
Mol Ecol ; 26(8): 2306-2316, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28133829

RESUMO

Moving hybrid zones provide compelling examples of evolution in action, yet long-term studies that test the assumptions of hybrid zone stability are rare. Using replicated transect samples collected over a 10-year interval from 2002 to 2012, we find evidence for concerted movement of genetic clines in a plateau fence lizard hybrid zone (Sceloporus tristichus) in Arizona. Cline-fitting analyses of SNP and mtDNA data both provide evidence that the hybrid zone shifted northward by approximately 2 km during the 10-year interval. For each sampling period, the mtDNA cline centre is displaced from the SNP cline centre and maintaining an introgression distance of approximately 3 km. The northward expansion of juniper trees into the Little Colorado River Basin in the early 1900s provides a plausible mechanism for hybrid zone formation and movement, and a broadscale quantification of recent land cover change provides support for increased woody species encroachment at the southern end of the hybrid zone. However, population processes can also contribute to hybrid zone movement, and the current stability of the ecotone habitats in the centre of the hybrid zone suggests that movement could decelerate in the future.


Assuntos
Evolução Biológica , Hibridização Genética , Lagartos/genética , Animais , Arizona , Núcleo Celular/genética , DNA Mitocondrial/genética , Genética Populacional , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
10.
PeerJ ; 2: e409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24949232

RESUMO

Conspecific rape often increases male reproductive success. However, the haste and aggression of forced copulations suggests that males may sometimes rape heterospecific females, thus making rape a likely, but undocumented, source of hybrids between broadly sympatric species. We present evidence that heterospecific rape may be the source of hybrids between Black-footed and Laysan Albatrosses (Phoebastria nigripes, and P. immutabilis, respectively). Extensive field studies have shown that paired (but not unpaired) males of both of these albatross species use rape as a supplemental reproductive strategy. Between species differences in size, timing of laying, and aggressiveness suggest that Black-footed Albatrosses should be more successful than Laysan Albatrosses in heteropspecific rape attempts, and male Black-footed Albatrosses have been observed attempting to force copulations on female Laysan Albatrosses. Nuclear markers showed that the six hybrids we studied were F1s and mitochondrial markers showed that male Black-footed Albatrosses sired all six hybrids. Long-term gene exchange between these species has been from Black-footed Albatrosses into Laysan Albatrosses, suggesting that the siring asymmetry found in our hybrids has long persisted. If hybrids are sired in heterospecific rapes, they presumably would be raised and sexually imprinted on Laysan Albatrosses, and two unmated hybrids in a previous study courted only Laysan Albatrosses.

11.
Evolution ; 68(2): 501-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24111665

RESUMO

In this study, we explore the long-standing issue of how many loci are needed to infer accurate phylogenetic relationships, and whether loci with particular attributes (e.g., parsimony informativeness, variability, gene tree resolution) outperform others. To do so, we use an empirical data set consisting of the seven species of chickadees (Aves: Paridae), an analytically tractable, recently diverged group, and well-studied ecologically but lacking a nuclear phylogeny. We estimate relationships using 40 nuclear loci and mitochondrial DNA using four coalescent-based species tree inference methods (BEST, *BEAST, STEM, STELLS). Collectively, our analyses contrast with previous studies and support a sister relationship between the Black-capped and Carolina Chickadee, two superficially similar species that hybridize along a long zone of contact. Gene flow is a potential source of conflict between nuclear and mitochondrial gene trees, yet we find a significant, albeit low, signal of gene flow. Our results suggest that relatively few loci with high information content may be sufficient for estimating an accurate species tree, but that substantially more loci are necessary for accurate parameter estimation. We provide an empirical reference point for researchers designing sampling protocols with the purpose of inferring phylogenies and population parameters of closely related taxa.


Assuntos
Evolução Molecular , Passeriformes/genética , Filogenia , Animais , DNA Mitocondrial/genética , Fluxo Gênico , Loci Gênicos , Genética Populacional/métodos , Hibridização Genética , América do Norte , Passeriformes/classificação , Tamanho da Amostra , Viés de Seleção
12.
Syst Biol ; 63(1): 17-30, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23945075

RESUMO

Gene flow among populations or species and incomplete lineage sorting (ILS) are two evolutionary processes responsible for generating gene tree discordance and therefore hindering species tree estimation. Numerous studies have evaluated the impacts of ILS on species tree inference, yet the ramifications of gene flow on species trees remain less studied. Here, we simulate and analyse multilocus sequence data generated with ILS and gene flow to quantify their impacts on species tree inference. We characterize species tree estimation errors under various models of gene flow, such as the isolation-migration model, the n-island model, and gene flow between non-sister species or involving ancestral species, and species boundaries crossed by a single gene copy (allelic introgression) or by a single migrant individual. These patterns of gene flow are explored on species trees of different sizes (4 vs. 10 species), at different time scales (shallow vs. deep), and with different migration rates. Species trees are estimated with the multispecies coalescent model using Bayesian methods (BEST and *BEAST) and with a summary statistic approach (MPEST) that facilitates phylogenomic-scale analysis. Even in cases where the topology of the species tree is estimated with high accuracy, we find that gene flow can result in overestimates of population sizes (species tree dilation) and underestimates of species divergence times (species tree compression). Signatures of migration events remain present in the distribution of coalescent times for gene trees, and with sufficient data it is possible to identify those loci that have crossed species boundaries. These results highlight the need for careful sampling design in phylogeographic and species delimitation studies as gene flow, introgression, or incorrect sample assignments can bias the estimation of the species tree topology and of parameter estimates such as population sizes and divergence times.


Assuntos
Classificação/métodos , Simulação por Computador , Fluxo Gênico , Modelos Genéticos , Filogenia , Alelos , Teorema de Bayes , Especiação Genética
13.
Genome Biol Evol ; 5(12): 2410-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24259316

RESUMO

Species divergence is typically thought to occur in the absence of gene flow, but many empirical studies are discovering that gene flow may be more pervasive during species formation. Although many examples of divergence with gene flow have been identified, few clades have been investigated in a comparative manner, and fewer have been studied using genome-wide sequence data. We contrast species divergence genetic histories across eight triplets of North American Sceloporus lizards using a maximum likelihood implementation of the isolation-migration (IM) model. Gene flow at the time of species divergence is modeled indirectly as variation in species divergence time across the genome or explicitly using a migration rate parameter. Likelihood ratio tests (LRTs) are used to test the null model of no gene flow at speciation against these two alternative gene flow models. We also use the Akaike information criterion to rank the models. Hundreds of loci are needed for the LRTs to have statistical power, and we use genome sequencing of reduced representation libraries to obtain DNA sequence alignments at many loci (between 340 and 3,478; mean = 1,678) for each triplet. We find that current species distributions are a poor predictor of whether a species pair diverged with gene flow. Interrogating the genome using the triplet method expedites the comparative study of species divergence history and the estimation of genetic parameters associated with speciation.


Assuntos
Especiação Genética , Lagartos/genética , Animais , Sequência de Bases , Fluxo Gênico , Biblioteca Gênica , Variação Genética , Genoma/genética , Genômica , Lagartos/classificação , Filogeografia , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Mol Phylogenet Evol ; 63(2): 219-29, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21867766

RESUMO

The mockingbirds, thrashers and allied birds in the family Mimidae are broadly distributed across the Americas. Many aspects of their phylogenetic history are well established, but there has been no previous phylogenetic study that included all species in this radiation. Our reconstructions based on mitochondrial and nuclear DNA sequence markers show that an early bifurcation separated the Mimidae into two clades, the first of which includes North and Middle American taxa (Melanotis, Melanoptila, Dumetella) plus a small radiation that likely occurred largely within the West Indies (Ramphocinclus, Allenia, Margarops, Cinclocerthia). The second and larger radiation includes the Toxostoma thrasher clade, along with the monotypic Sage Thrasher (Oreoscoptes) and the phenotypically diverse and broadly distributed Mimus mockingbirds. This mockingbird group is biogeographically notable for including several lineages that colonized and diverged on isolated islands, including the Socorro Mockingbird (Mimus graysoni, formerly Mimodes) and the diverse and historically important Galapagos mockingbirds (formerly Nesomimus). Our reconstructions support a sister relationship between the Galapagos mockingbird lineage and the Bahama Mockingbird (M. gundlachi) of the West Indies, rather than the Long-tailed Mockingbird (M. longicaudatus) or other species presently found on the South American mainland. Relationships within the genus Toxostoma conflict with traditional arrangements but support a tree based on a preivous mtDNA study. For instance, the southern Mexican endemic Ocellated Thrasher (T. ocellatum) is not an isolated sister species of the Curve-billed thrasher (T. curvirostre).


Assuntos
Passeriformes/classificação , Passeriformes/genética , Filogenia , Animais , Evolução Biológica , DNA Mitocondrial/genética , Evolução Molecular , Marcadores Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA