Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Diving Hyperb Med ; 54(1): 69-72, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507913

RESUMO

Bounce diving with rapid descents to very deep depths may provoke the high-pressure neurological syndrome (HPNS). The strategy of including small fractions of nitrogen in the respired gas to produce an anti-HPNS narcotic effect increases the gas density which may exceed recommended guidelines. In 2020 the 'Wetmules' dive team explored the Pearse Resurgence cave (New Zealand) to 245 m breathing trimix (approximately 4% oxygen, 91% helium and 5% nitrogen). Despite the presence of nitrogen, one diver experienced HPNS tremors beyond 200 m. The use of hydrogen (a light yet slightly narcotic gas) has been suggested as a solution to this problem but there are concerns, including the potential for ignition and explosion of hydrogen-containing gases, and accelerated heat loss. In February 2023 a single dive to 230 m was conducted in the Pearse Resurgence to experience hydrogen as a breathing gas in a deep bounce dive. Using an electronic closed-circuit rebreather, helihydrox (approximately 3% oxygen, 59% helium and 38% hydrogen) was breathed between 200 and 230 m. This was associated with amelioration of HPNS symptoms in the vulnerable diver and no obvious adverse effects. The use of hydrogen is a potential means of progressing deeper with effective HPNS amelioration while maintaining respired gas density within advised guidelines.


Assuntos
Mergulho , Síndrome Neurológica de Alta Pressão , Humanos , Mergulho/efeitos adversos , Hélio , Hidrogênio , Nitrogênio , Oxigênio
2.
Front Bioeng Biotechnol ; 11: 1166601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207126

RESUMO

Venoms are complex chemical arsenals that have evolved independently many times in the animal kingdom. Venoms have attracted the interest of researchers because they are an important innovation that has contributed greatly to the evolutionary success of many animals, and their medical relevance offers significant potential for drug discovery. During the last decade, venom research has been revolutionized by the application of systems biology, giving rise to a novel field known as venomics. More recently, biotechnology has also made an increasing impact in this field. Its methods provide the means to disentangle and study venom systems across all levels of biological organization and, given their tremendous impact on the life sciences, these pivotal tools greatly facilitate the coherent understanding of venom system organization, development, biochemistry, and therapeutic activity. Even so, we lack a comprehensive overview of major advances achieved by applying biotechnology to venom systems. This review therefore considers the methods, insights, and potential future developments of biotechnological applications in the field of venom research. We follow the levels of biological organization and structure, starting with the methods used to study the genomic blueprint and genetic machinery of venoms, followed gene products and their functional phenotypes. We argue that biotechnology can answer some of the most urgent questions in venom research, particularly when multiple approaches are combined together, and with other venomics technologies.

3.
Toxins (Basel) ; 14(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36006190

RESUMO

Snake venom is an adaptive ecological trait that has evolved primarily as a form of prey subjugation. Thus, the selection pressure for toxin diversification is exerted by the prey's physiological targets, with this pressure being particularly acute for specialist feeders, such as the King Cobra species, all of which are snake-prey specialists. However, while extensive research has been undertaken to elucidate key amino acids that guide toxin structure-activity relationships, reciprocal investigations into the specific sites guiding prey-lineage selective effects have been lacking. This has largely been due to the lack of assay systems amenable to systematic amino acid replacements of targeted proteins in the prey's physiological pathways. To fill this knowledge gap, we used a recently described approach based upon mimotope peptides corresponding to the orthosteric site of nicotinic acetylcholine receptor alpha-1 subunits, a major binding site for snake venom neurotoxins that cause flaccid paralysis. We investigated the venoms of four different types of King Cobra (Cambodian, Javan, Malaysian, and Thai). This approach allowed for the determination of the key amino acid positions in King Cobra snake prey that are selectively bound by the toxins, whereby replacing these amino acids in the snake-prey orthosteric site with those from lizards or rats resulted in a significantly lower level of binding by the venoms, while conversely replacing the lizard or rat amino acids with those from the snake at that position increased the binding. By doing such, we identified three negatively charged amino acids in the snake orthosteric site that are strongly bound by the positively charged neurotoxic three-finger toxins found in King Cobra venom. This study, thus, sheds light on the selection pressures exerted by a specialist prey item for the evolution of lineage-selective toxins.


Assuntos
Colubridae , Lagartos , Receptores Nicotínicos , Toxinas Biológicas , Aminoácidos/metabolismo , Animais , Colubridae/metabolismo , Venenos Elapídicos/metabolismo , Venenos Elapídicos/toxicidade , Elapidae/metabolismo , Lagartos/metabolismo , Ophiophagus hannah/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Venenos de Serpentes/química , Toxinas Biológicas/metabolismo
4.
Biol Rev Camb Philos Soc ; 97(5): 1823-1843, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580905

RESUMO

Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade-off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade-off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called 'autoresistance'. This is often thought to have evolved for self-protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Adaptação Fisiológica/genética , Animais , Fenótipo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35248757

RESUMO

The viperid snake genus Bothriechis consists of eleven species distributed among Central and South America, living across low and high-altitude habitats. Despite Bothriechis envenomations being prominent across the Central and South American region, the functional effects of Bothriechis venoms are poorly understood. Thus, the aim of this study was to investigate the coagulotoxic and neurotoxic activities of Bothriechis venoms to fill this knowledge gap. Coagulotoxic investigations revealed Bothriechis nigroviridis and B. schlegelii to have pseudo-procoagulant venom activity, forming weak clots that rapidly break down, thereby depleting fibrinogen levels and thus contributing to a net anticoagulant state. While one sample of B. lateralis also showed weaker pseudo-procoagulant activity, directly clotting fibrinogen, two samples of B. lateralis venom were anticoagulant through the inhibition of thrombin and factor Xa activity. Differential efficacy of PoliVal-ICP antivenom was also observed, with the pseudo-procoagulant effect of B. nigroviridis venom poorly neutralised, despite this same activity in the venom of B. schlegelii being effectively neutralised. Significant specificity of these fibrinogen cleaving toxins was also observed, with no activity upon model amphibian, avian, lizard or rodent plasma observed. However, upon avian plasma the venom of B. nigroviridis exerted a complete anticoagulant effect, in contrast to the pseudo-procoagulant effect seen on human plasma. Neurotoxic investigations revealed B. schlegelii to be unique among the genus in having potent binding to the orthosteric site of the alpha-1 postsynaptic nicotinic acetylcholine receptor (with B. lateralis having a weaker but still discernible effect). This represents the first identification of postsynaptic nAChR neurotoxic activity for Bothriechis. In conclusion this study identifies notable differential activity within the coagulotoxic and postsynaptic neurotoxic activity of Bothriechis venoms, supporting previous research, and highlights the need for further studies with respect to antivenom efficacy as well as coagulotoxin specificity for Bothriechis venoms.


Assuntos
Venenos de Crotalídeos , Viperidae , Animais , Anticoagulantes/toxicidade , Antivenenos/farmacologia , Venenos de Crotalídeos/toxicidade , Fibrinogênio/metabolismo , Árvores/metabolismo , Viperidae/metabolismo
6.
BMC Biol ; 19(1): 253, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823526

RESUMO

BACKGROUND: Snakes and primates have a multi-layered coevolutionary history as predators, prey, and competitors with each other. Previous work has explored the Snake Detection Theory (SDT), which focuses on the role of snakes as predators of primates and argues that snakes have exerted a selection pressure for the origin of primates' visual systems, a trait that sets primates apart from other mammals. However, primates also attack and kill snakes and so snakes must simultaneously avoid primates. This factor has been recently highlighted in regard to the movement of hominins into new geographic ranges potentially exerting a selection pressure leading to the evolution of spitting in cobras on three independent occasions. RESULTS: Here, we provide further evidence of coevolution between primates and snakes, whereby through frequent encounters and reciprocal antagonism with large, diurnally active neurotoxic elapid snakes, Afro-Asian primates have evolved an increased resistance to α-neurotoxins, which are toxins that target the nicotinic acetylcholine receptors. In contrast, such resistance is not found in Lemuriformes in Madagascar, where venomous snakes are absent, or in Platyrrhini in the Americas, where encounters with neurotoxic elapids are unlikely since they are relatively small, fossorial, and nocturnal. Within the Afro-Asian primates, the increased resistance toward the neurotoxins was significantly amplified in the last common ancestor of chimpanzees, gorillas, and humans (clade Homininae). Comparative testing of venoms from Afro-Asian and American elapid snakes revealed an increase in α-neurotoxin resistance across Afro-Asian primates, which was likely selected against cobra venoms. Through structure-activity studies using native and mutant mimotopes of the α-1 nAChR receptor orthosteric site (loop C), we identified the specific amino acids responsible for conferring this increased level of resistance in hominine primates to the α-neurotoxins in cobra venom. CONCLUSION: We have discovered a pattern of primate susceptibility toward α-neurotoxins that supports the theory of a reciprocal coevolutionary arms-race between venomous snakes and primates.


Assuntos
Adaptação Fisiológica , Elapidae , Neurotoxinas , Animais , Venenos Elapídicos , Haplorrinos , Primatas
7.
Fish Shellfish Immunol ; 119: 231-237, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626789

RESUMO

Quantification of specific antibody responses is critical in determining activation of MHCII-dependent immune memory and is generally performed by enzyme-linked immunosorbent assay (ELISA). Antibody avidity for a particular antigen is also informative of the quality of the adaptive immune response following vaccination. Avidity can be determined by chaotropic elution ELISA, pre-absorption ELISA, or surface plasmon resonance (SPR), although multimeric antibodies such as IgM are problematic for SPR. ELISA-based assays are very time consuming, require secondary antibody reagents, and are poorly repeatable. Here we demonstrate that biolayer interferometry (BLI) using an Octet HTX instrument can robustly and reproducibly quantify and determine avidity of specific IgM for an antigen directly from fish serum in a single step. We collected sera from giant grouper (Epinephelus lanceolatus) that had been vaccinated with the hapten 2,4-dinitrophenol conjugated to keyhole limpet hemocyanin (DNP-KLH) and from control fish injected with phosphate buffered saline. The specific IgM in the serum and its avidity for DNP were quantified via ELISA and BLI. BLI was precise and highly repeatable for determination of the quantity and avidity of antibody in the serum compared to ELISA. The wet-lab preparation and machine running time for BLI was 3-5 times faster than ELISA to generate the same amount of data. The ELISA inter-plate variation significantly affected reproducibility while BLI was consistent and repeatable between samples and plates. Indeed, the consistency of BLI data indicated that technical triplicates were redundant. Biological replication alone was sufficient to elucidate the effect of treatments. However, BLI required a lower serum dilution than ELISA for similar sensitivity, and thus more serum was required to produce high resolution data. BLI is an extremely high-throughput assay, providing teleost serum IgM quantification and avidity data as a single-step, agile alternative to ELISA.


Assuntos
Interferometria , Ressonância de Plasmônio de Superfície , Animais , Antígenos , Ensaio de Imunoadsorção Enzimática , Imunoglobulina M , Reprodutibilidade dos Testes
8.
Toxins (Basel) ; 13(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34437420

RESUMO

Bites from helodermatid lizards can cause pain, paresthesia, paralysis, and tachycardia, as well as other symptoms consistent with neurotoxicity. Furthermore, in vitro studies have shown that Heloderma horridum venom inhibits ion flux and blocks the electrical stimulation of skeletal muscles. Helodermatids have long been considered the only venomous lizards, but a large body of robust evidence has demonstrated venom to be a basal trait of Anguimorpha. This clade includes varanid lizards, whose bites have been reported to cause anticoagulation, pain, and occasionally paralysis and tachycardia. Despite the evolutionary novelty of these lizard venoms, their neuromuscular targets have yet to be identified, even for the iconic helodermatid lizards. Therefore, to fill this knowledge gap, the venoms of three Heloderma species (H. exasperatum, H. horridum and H. suspectum) and two Varanus species (V. salvadorii and V. varius) were investigated using Gallus gallus chick biventer cervicis nerve-muscle preparations and biolayer interferometry assays for binding to mammalian ion channels. Incubation with Heloderma venoms caused the reduction in nerve-mediated muscle twitches post initial response of avian skeletal muscle tissue preparation assays suggesting voltage-gated sodium (NaV) channel binding. Congruent with the flaccid paralysis inducing blockage of electrical stimulation in the skeletal muscle preparations, the biolayer interferometry tests with Heloderma suspectum venom revealed binding to the S3-S4 loop within voltage-sensing domain IV of the skeletal muscle channel subtype, NaV1.4. Consistent with tachycardia reported in clinical cases, the venom also bound to voltage-sensing domain IV of the cardiac smooth muscle calcium channel, CaV1.2. While Varanus varius venom did not have discernable effects in the avian tissue preparation assay at the concentration tested, in the biointerferometry assay both V. varius and V. salvadorii bound to voltage-sensing domain IV of both NaV1.4 and CaV1.2, similar to H. suspectum venom. The ability of varanid venoms to bind to mammalian ion channels but not to the avian tissue preparation suggests prey-selective actions, as did the differential potency within the Heloderma venoms for avian versus mammalian pathophysiological targets. This study thus presents the detailed characterization of Heloderma venom ion channel neurotoxicity and offers the first evidence of varanid lizard venom neurotoxicity. In addition, the data not only provide information useful to understanding the clinical effects produced by envenomations, but also reveal their utility as physiological probes, and underscore the potential utility of neglected venomous lineages in the drug design and development pipeline.


Assuntos
Canais de Cálcio/metabolismo , Lagartos , Neurotoxinas/toxicidade , Canais de Sódio/metabolismo , Peçonhas/toxicidade , Animais , Galinhas , Técnicas In Vitro , Masculino , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Ligação Proteica
9.
BMC Ecol Evol ; 21(1): 150, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344322

RESUMO

BACKGROUND: Understanding drivers of animal biodiversity has been a longstanding aim in evolutionary biology. Insects and fishes represent the largest lineages of invertebrates and vertebrates respectively, and consequently many ideas have been proposed to explain this diversity. Natural enemy interactions are often important in diversification dynamics, and key traits that mediate such interactions may therefore have an important role in explaining organismal diversity. Venom is one such trait which is intricately bound in antagonistic coevolution and has recently been shown to be associated with increased diversification rates in tetrapods. Despite ~ 10% of fish families and ~ 16% of insect families containing venomous species, the role that venom may play in these two superradiations remains unknown. RESULTS: In this paper we take a broad family-level phylogenetic perspective and show that variation in diversification rates are the main cause of variations in species richness in both insects and fishes, and that venomous families have diversification rates twice as high as non-venomous families. Furthermore, we estimate that venom was present in ~ 10% and ~ 14% of the evolutionary history of fishes and insects respectively. CONCLUSIONS: Consequently, we provide evidence that venom has played a role in generating the remarkable diversity in the largest vertebrate and invertebrate radiations.


Assuntos
Peçonhas , Vertebrados , Animais , Humanos , Insetos , Dor , Filogenia , Vertebrados/genética
10.
Toxicol Lett ; 346: 16-22, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878385

RESUMO

The reef stonefish (Synanceia verrucosa) is a venomous fish which causes excruciatingly painful envenomations. While some research on the pathophysiology and functions of the venom have been conducted, there are still some gaps in the understanding of the venom effects due to the extreme lability of fish venom toxins and the lack of available testing platforms. Here we set out to assess new functions of the venom whilst also attempting to address some unclear pathophysiological effects from previous literature. Utilising a biolayer interferometry assay, our results highlight that the venom binds to the orthosteric site of the α-1 nicotinic acetylcholine receptor as well as the domain IV of voltage-gated Ca2+ (CaV1.2) channel mimotopes. Both these results add some clarity to the previously ambiguous literature. We further assessed the coagulotoxic effects of the venom using thromboelastography and Stago STA-R Max coagulation analyser assays. We reveal that the venom produced anticoagulant activity and significantly delayed time until clot formation of recalcified human plasma which is likely through the degradation of phospholipids. There was a difference between fresh and lyophilised venom activity toward the nicotinic acetylcholine receptor mimotopes and coagulation assays, whilst no difference was observed in the activity toward the domain IV of CaV1.2 mimotopes. This research adds further insights into the neglected area of fish venom whilst also highlighting the extreme labile nature of fish venom toxins.


Assuntos
Venenos de Peixe/toxicidade , Peixes/fisiologia , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Plasma/química , Domínios Proteicos , Tromboelastografia
11.
Neurotox Res ; 39(4): 1116-1122, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33743133

RESUMO

Antagonistic coevolutionary relationships provide intense selection pressure which drive changes in the genotype. Predator-prey interactions have caused some venomous snakes and their predators/prey to evolve α-neurotoxin resistance through changes at the orthosteric site of nicotinic acetylcholine receptors. The presence of negatively charged amino acids at orthosteric site positions 191 and 195 is the ancestral state. These negatively charged amino acids have exerted a selection pressure for snake venom α-neurotoxins to evolve with strong positive charges on their molecular surface, with the opposite-charge attraction facilitating the binding by the neurotoxins. We aimed to test the effects of a series of mutations whereby one or both negatively charged amino acids are replaced by uncharged residues to ascertain if this was a novel form of reduced venom susceptibility in the varanid species. Using a biolayer interferometry assay, we tested the relative binding of α-neurotoxin-rich snake venoms against the orthosteric sites of V. giganteus (Perentie) and V. komodoensis (Komodo dragon), which both possess the negatively charged aspartic acid at position 191; V. mertensi (Merten's water monitor), which also has aspartic acid at position 195; and Varanus exanthematicus (savannah monitor), which lacks negatively charged amino acids at both positions 191 and 195. The orthosteric sites of these species are otherwise identical. In order to complete the structure-function relationship examination, we also tested a mutant version with the negatively charged aspartic acid at both positions 191 and 195. It was demonstrated that the presence of a negatively charged amino acid at either position 191 or 195 is crucial for the successful binding of snake venom α-neurotoxins, with V. giganteus, V. komodoensis and V. mertensi all strongly bound. The mutant version containing a negatively charged amino acid at both positions was bound equipotently to the native forms of V. giganteus, V. komodoensis and V. mertensi. Thus, the presence of a negatively charged amino acid at both positions does not increase binding affinity. In contrast, Varanus exanthematicus, lacking a negatively charged amino acid at either position, displayed dramatically less sensitivity to neurotoxins compared with the other species. V. exanthematicus is distinguished from the other species examined in this study by being a small, terrestrial, slow-moving species living sympatrically with a high density of large cobra species that have neurotoxin-rich venoms. Thus, this vulnerable prey item seems to have evolved a novel form of reduced susceptibility to snake venom neurotoxins under a strong selection pressures from these neurotoxic predators. These results therefore contribute to the body of knowledge of predator/prey chemical arm races while providing novel insights into the structure-activity relationships of the orthosteric site of the nicotinic acetylcholine receptor alpha-subunit.


Assuntos
Venenos Elapídicos/toxicidade , Lagartos/genética , Mutação/genética , Comportamento Predatório/fisiologia , Receptores Nicotínicos/genética , Animais , Elapidae
12.
Inflamm Bowel Dis ; 27(10): 1641-1652, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33570153

RESUMO

BACKGROUND: Intestinal macrophages are key immune cells in the maintenance of intestinal immune homeostasis and have a role in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms by which macrophages exert a pathological influence in both ulcerative colitis (UC) and Crohn disease (CD) are not yet well understood. METHODS: We purified intestinal macrophages from gastrointestinal mucosal biopsies (patients with UC, patients with CD, and healthy donors) and analyzed their transcriptome by RNA sequencing and bioinformatics, confirming results with quantitative polymerase chain reaction and immunohistochemistry. RESULTS: Compared with those of healthy donors, intestinal macrophages in patients with UC and with CD showed cellular reprograming of 1287 and 840 dysregulated genes, respectively (false discovery rate ≤ 0.1). The UC and CD intestinal macrophages showed an activated M1 inflammatory phenotype and the downregulation of genes engaged in drug/xenobiotic metabolism. Only macrophages from CD showed, concomitant to an M1 phenotype, a significant enrichment in the expression of M2 and fibrotic and granuloma-related genes. For the first time, we showed (and validated by quantitative polymerase chain reaction and immunohistochemistry) that intestinal macrophages in patients with IBD present both M1 and M2 features, as recently described for tumor-associated macrophages, that affect key pathways for IBD pathology, represented by key markers such as MMP12 (fibrosis), CXCL9 (T-cell attraction), and CD40 (T-cell activation). CONCLUSIONS: Our data support the therapeutic targeting of macrophages to maintain remission in IBD but also indicate that a shift toward an M2 program-as proposed by some reports-may not limit the recruitment and activation of T cells because M2 features do not preclude M1 activation in patients with UC or CD and could exacerbate M2-related CD-specific features such as fibrosis and the formation of granulomas.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Fibrose , Humanos , Mucosa Intestinal , Macrófagos
13.
Neurotox Res ; 39(3): 697-704, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33428181

RESUMO

Research into the neurotoxic activity of venoms from species within the snake family Viperidae is relatively neglected compared with snakes in the Elapidae family. Previous studies into venoms from the Bitis genus of vipers have identified the presence of presynaptic phospholipase A2 neurotoxins in B. atropos and B. caudalis, as well as a postsynaptic phospholipase A2 in B. arietans. Yet, no studies have investigated how widespread neurotoxicity is across the Bitis genus or if they exhibit prey selectivity of their neurotoxins. Utilising a biolayer interferometry assay, we were able to assess the binding of crude venom from 14 species of Bitis to the neuromuscular α-1 nAChR orthosteric site across a wide range of vertebrate taxa mimotopes. Postsynaptic binding was seen for venoms from B. arietans, B. armata, B. atropos, B. caudalis, B. cornuta, B. peringueyi and B. rubida. To further explore the types of neurotoxins present, venoms from the representatives B. armata, B. caudalis, B. cornuta and B. rubida were additionally tested in the chick biventer cervicis nerve muscle preparation, which showed presynaptic and postsynaptic activity for B. caudalis and only presynaptic neurotoxicity for B. cornuta and B. rubida, with myotoxicity also evident for some species. These results, combined with the biolayer interferometry results, indicate complex neurotoxicity exerted by Bitis species, which varies dramatically by lineage tested upon. Our data also further support the importance of sampling across geographical localities, as significant intraspecific variation of postsynaptic neurotoxicity was reported across the different localities.


Assuntos
Neurotoxinas/genética , Neurotoxinas/toxicidade , Venenos de Víboras/genética , Venenos de Víboras/toxicidade , Animais , Galinhas , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/inervação , Neurotoxinas/isolamento & purificação , Técnicas de Cultura de Órgãos , Especificidade da Espécie , Venenos de Víboras/isolamento & purificação , Viperidae
14.
Proc Biol Sci ; 288(1942): 20202703, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33434458

RESUMO

The evolution of venom resistance through coevolutionary chemical arms races has arisen multiple times throughout animalia. Prior documentation of resistance to snake venom α-neurotoxins consists of the N-glycosylation motif or the hypothesized introduction of arginine at positions 187 at the α-1 nicotinic acetylcholine receptor orthosteric site. However, no further studies have investigated the possibility of other potential forms of resistance. Using a biolayer interferometry assay, we first confirm that the previously hypothesized resistance conferred by arginine at position 187 in the honey badger does reduce binding to α-neurotoxins, which has never been functionally tested. We further discovered a novel form of α-neurotoxin resistance conferred by charge reversal mutations, whereby a negatively charged amino acid is replaced by the positively charged amino acid lysine. As venom α-neurotoxins have evolved strong positive charges on their surface to facilitate binding to the negatively charged α-1 orthosteric site, these mutations result in a positive charge/positive charge interaction electrostatically repelling the α-neurotoxins. Such a novel mechanism for resistance has gone completely undiscovered, yet this form of resistance has convergently evolved at least 10 times within snakes. These coevolutionary innovations seem to have arisen through convergent phenotypes to ultimately evolve a similar biophysical mechanism of resistance across snakes.


Assuntos
Neurotoxinas , Receptores Nicotínicos , Sequência de Aminoácidos , Animais , Mutação , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Eletricidade Estática
15.
Artigo em Inglês | MEDLINE | ID: mdl-33187976

RESUMO

BACKGROUND: Glucocorticosteroids (GC) are long-established, widely used agents for induction of remission in inflammatory bowel disease (IBD). Hyperglycaemia is a known complication of GC treatment with implications for morbidity and mortality. Published data on prevalence and risk factors for GC-induced hyperglycaemia in the IBD population are limited. We prospectively characterise this complication in our cohort, employing machine-learning methods to identify key predictors of risk. METHODS: We conducted a prospective observational study of IBD patients receiving intravenous hydrocortisone (IVH). Electronically triggered three times daily capillary blood glucose (CBG) monitoring was recorded alongside diabetes mellitus (DM) history, IBD biomarkers, nutritional and IBD clinical activity scores. Hyperglycaemia was defined as CBG ≥11.1 mmol/L and undiagnosed DM as glycated haemoglobin ≥48 mmol/mol. Random forest (RF) regression models were used to extract predictor-patterns present within the dataset. RESULTS: 94 consecutive IBD patients treated with IVH were included. 60% (56/94) of the cohort recorded an episode of hyperglycaemia, including 57% (50/88) of those with no history of DM, of which 19% (17/88) and 5% (4/88) recorded a CBG ≥14 mmol/L and ≥20 mmol/L, respectively. The RF models identified increased C-reactive protein (CRP) followed by a longer IBD duration as leading risk predictors for significant hyperglycaemia. CONCLUSION: Hyperglycaemia is common in IBD patients treated with intravenous GC. Therefore, CBG monitoring should be included in routine clinical practice. Machine learning methods can identify key risk factors for clinical complications. Steroid-sparing treatment strategies may be considered for those IBD patients with higher admission CRP and greater disease duration, who appear to be at the greatest risk of hyperglycaemia.


Assuntos
Hiperglicemia , Doenças Inflamatórias Intestinais , Glucocorticoides/efeitos adversos , Humanos , Hiperglicemia/induzido quimicamente , Incidência , Doenças Inflamatórias Intestinais/tratamento farmacológico , Aprendizado de Máquina
16.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036249

RESUMO

The evolution of an aquatic lifestyle from land dwelling venomous elapids is a radical ecological modification, bringing about many evolutionary changes from morphology to diet. Diet is an important ecological facet which can play a key role in regulating functional traits such as venom composition and prey-specific targeting of venom. In addition to predating upon novel prey (e.g., fish, fish eggs and invertebrates), the venoms of aquatic elapids also face the challenge of increased prey-escape potential in the aquatic environment. Thus, despite the independent radiation into an aquatic niche on four separate occasions, the venoms of aquatic elapids are evolving under convergent selection pressures. Utilising a biolayer interferometry binding assay, this study set out to elucidate whether crude venoms from representative aquatic elapids were target-specific to the orthosteric site of postsynaptic nicotinic acetylcholine receptor mimotopes of fish compared to other terrestrial prey types. Representatives of the four aquatic lineages were: aquatic coral snakes representative was Micrurus surinamensis;, sea kraits representative was Laticauda colubrina; sea snakes representatives were two Aipysurus spp. and eight Hydrophis spp; and water cobras representative was Naja annulata. No prey-specific differences in crude venom binding were observed from any species tested, except for Aipysurus laevis, which showed slight evidence of prey-potency differences. For Hydrophis caerulescens, H. peronii, H. schistosus and M. surinamensis, there was a lack of binding to the orthosteric site of any target lineage. Subsequent testing on the in vitro chick-biventer cervicis muscle preparation suggested that, while the venoms of these species bound postsynaptically, they bound to allosteric sites rather than orthosteric. Allosteric binding is potentially a weaker but faster-acting form of neurotoxicity and we hypothesise that the switch to allosteric binding is likely due to selection pressures related to prey-escape potential. This research has potentially opened up the possibility of a new functional class of toxins which have never been assessed previously while shedding light on the selection pressures shaping venom evolution.


Assuntos
Venenos Elapídicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Sítios de Ligação , Venenos Elapídicos/metabolismo , Elapidae , Neurotoxinas/farmacologia , Ligação Proteica , Receptores Nicotínicos/metabolismo , Especificidade da Espécie
17.
Cities ; 106: 102904, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32921864

RESUMO

Broadband access in the home is a necessity, especially since the COVID-19 pandemic. Increasingly, connectivity is of vital importance for school, work, family, and friends. Existing international research on the implementation of broadband has studied its adoption patterns with a focus on the rural/urban digital divide. This paper explores the digital divide in a case study of the seventh largest city, by population, in the United States; San Antonio is a majority-minority city where over half of the people are Hispanic. This paper focuses on the five key affordability factors that drive broadband adoption. Researchers test social exclusion theory, the structural facets of poverty and social marginality to ascertain its potential impact on broadband access. The authors conducted a survey in both English and Spanish to learn more about the affordability factors that influence the broadband digital divide. Through our analysis, we found evidence that four of the factors (geographical disparities, profit-based discrimination, technology deployment cost, and socio-economic factors) played a role in the digital divide in this case study. The results of this study demonstrate that the digital divide is not exclusively a rural/urban digital divide, but can also occur in an intra-city context. This is especially evident in low-income areas within the city because they have substantially lower broadband adoption rates. The results of this study demonstrate the importance of looking closely at issues of social exclusion of marginalized groups and the affordability of broadband access intra-city.

18.
Toxicon X ; 7: 100050, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32642644

RESUMO

Contralaterally positioned maxillary (upper jaw) venom glands in snakes are mechanically independent, being able to discharge venom from either gland separately. This has led some studies to test venom function and composition of each contralaterally positioned venom gland to investigate any differences. However, the data on the subject to-date derives from limited sample sizes, appearing somewhat contradictory, and thus still remains inconclusive. Here, we tested samples obtained from the left and right venom glands of four N. siamensis specimens for their relative binding to the orthosteric site of amphibian, lizard, snake, bird, and rodent alpha-1 nicotinic acetylcholine receptors. We also show the relative proteomic patterns displayed by reversed phase liquid chromatography - mass spectrometry. Our results indicate that three of the venom gland sets showed no difference in both functional binding and composition, whilst one venom gland set showed a slight difference in functional binding (but not in specificity patterns between prey types) or venom composition. We hypothesise that these differences in functional binding may be due to one gland having previously ejected venom at some time prior to venom extraction, whilst its contralateral counterpart did not. This might cause the differential rate of toxin replenishment to be unequal between glands, thus instigating the difference in potency, likely due to uneven toxin proportions between glands at the time of venom extraction. These results demonstrate that the separate venom producing glands in snakes remain under the same genetic control elements and produce identical venom components.

19.
Diving Hyperb Med ; 50(2): 121-129, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32557413

RESUMO

INTRODUCTION: In 2018 12 children and one adult were anaesthetised before being extricated through over a kilometre of flooded cave in Thailand. Full face dive masks (FFMs) putatively capable of maintaining constant positive airway pressure (CPAP) were employed. Here we describe the anaesthetic intervention and investigate the CPAP capability of the FFM. METHODS: Pressure was measured inside and outside the Interspiro Divator FFM during 10 tidal and 10 vital capacity breaths in divers at the surface and submerged with the mask deployed on open-circuit scuba (10 divers); and a closed-circuit rebreather (five divers). Relative in-mask pressure was calculated as the difference between inside and outside pressures. We also measured the in-mask pressure generated by activation of the second stage regulator purge valve in open-circuit mode. RESULTS: When submerged in open-circuit mode the mean relative in-mask pressure remained positive in normal tidal breathing (inhalation 0.6 kPa [95% CI 0.3-0.9]; exhalation 1.1 [0.8-1.4]) and vital capacity breathing (inhalation 0.8 [0.4-1.1]; exhalation 1.2 [0.9-1.4]). As expected, the relative in-mask pressure was predominantly negative when used on closed-circuit with back mounted counter-lungs due to a negative static lung load. Mean in-mask pressure during purge valve operation was 3.99 kPa (approximately equal to 40 cmH2O) (range: 2.56 to 5.3 kPa). CONCLUSIONS: The CPAP function of the Interspiro Divator FFM works well configured with open-circuit scuba. This may have contributed to the success of the Thailand cave rescue. Caution is required in generalising this success to other diving scenarios.


Assuntos
Anestesia , Mergulho , Inconsciência , Adulto , Cavernas , Criança , Mergulho/fisiologia , Feminino , Humanos , Máscaras , Tailândia , Volume de Ventilação Pulmonar
20.
Aliment Pharmacol Ther ; 52(1): 135-142, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412134

RESUMO

BACKGROUND: Ustekinumab is effective in Crohn's disease. However, a substantial proportion of patients will not respond or lose response to ustekinumab. The current evidence to support the effectiveness of dose-optimisation for ustekinumab nonresponse is limited. AIM: To assess the effectiveness of dose escalation of ustekinumab. METHODS: This was a multicentre retrospective cohort study. We included active Crohn's disease patients who received a standard-dose intravenous induction and at least one subcutaneous ustekinumab 90 mg dose. All enrolled patients received dose escalation by either shortening the interval between the doses to every 4 or 6 weeks, intravenous reinduction or a combination of strategies. The primary outcome of the study was clinical response at week 16 after dose escalation. RESULTS: A total of 142 patients (22 centres/14 countries) were included. The patients were dose-escalated after a median treatment duration of 30 weeks. At week 16 from escalation, 73/142 (51.4%) responded to treatment, including 55/142 (38.7%) in clinical remission. Corticosteroid-free remission was achieved in 6/34 (17.6%) patients on corticosteroids at the time of escalation; 118/142 (83%) continued treatment beyond week 16. Follow-up data beyond week 16 were available for 74/118 (62.7%) patients. On the last follow-up, 51/98 (52%) patients with available data responded to treatment, including 41/98 (42%) in clinical remission. CONCLUSIONS: Intensification of ustekinumab maintenance dosage was effective in over 50% of the patients. This strategy should be considered in patients who are nonresponsive to every 8 weeks ustekinumab maintenance dosing.


Assuntos
Doença de Crohn/tratamento farmacológico , Fármacos Gastrointestinais/administração & dosagem , Ustekinumab/administração & dosagem , Administração Intravenosa , Adulto , Feminino , Humanos , Injeções Subcutâneas , Quimioterapia de Manutenção , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA