RESUMO
It is challenging to decouple typical protein-like chromophoric dissolved organic matter (CDOM) fluorophores from oil-related fluorophores in natural waters using standard steady-state fluorescence techniques. In the present work, time-resolved florescence spectroscopy was explored as a means of differentiating between these two types of fluorophores. Fluorescence lifetimes of oil products were measured as a function of excitation and emission wavelength in artificial seawater. A triexponential model gave τ1 = ~1-10 ns, τ2 = ~3-30 ns, and τ3 = ~0.2-2 ns. Time-resolved fluorescence amplitudes were dominated by τ3 (τ3 55-65 %; τ1 25-29 %; τ2 11-16 %) and contributions to steady-state fluorescence were dominated by τ1 and τ2. Lifetimes increased with decreasing λex. Fluorescence was quenched by halide ions, but ion concentrations in natural waters are insufficient for quenching to significantly change lifetimes. Heavier, denser oils had red-shifted emission and lower lifetimes. Results suggest that time-resolved spectroscopy can decouple oil and protein-like CDOM fluorophores at λex < 300 nm.
RESUMO
Criegee intermediates, formed by alkene ozonolysis in the troposphere, can react with volatile organic compounds (VOCs). The temperature-dependent kinetics of the reactions between the Criegee intermediate CH2OO and three aliphatic aldehydes, RCHO where R = H, CH3, and C2H5 (formaldehyde, acetaldehyde, and propionaldehyde, respectively), have been studied using a laser flash-photolysis transient absorption spectroscopy technique. The experimental measurements are supported by ab initio calculations at various composite levels of theory that characterize stationary points on the reaction potential and free energy surfaces. As with other reactions of CH2OO with organic carbonyls, the mechanisms involve 1,3-dipolar cycloaddition at the C=O group, over submerged barriers, leading to the formation of 1,2,4-trioxolane secondary ozonides. The bimolecular rate constants of all three reactions decrease with increasing temperature over the range 275-335 K and are characterized by equations of Arrhenius form: k(T) = (7.1 ± 1.5) × 10-14exp((1160 ± 60)/T), (8.9 ± 1.7) × 10-15exp((1530 ± 60)/T), and (5.3 ± 1.3) × 10-14exp((1210 ± 70)/T) cm3 s-1 for HCHO, CH3CHO, and C2H5CHO, respectively. Based on estimated concentrations of CH2OO, the reactions with aldehydes are unlikely to play a significant role in the atmosphere.
RESUMO
Wavelength and pressure dependent quantum yields (Ï, QYs) of propanal photolysis have been measured for photolysis wavelengths, λ = 300-330 nm, and buffer gases of 3-10 Torr propanal and 0-757 Torr N2. Following laser photolysis, three photochemical pathways were established, using Fourier transform infrared spectroscopy of the stable end-products. Photolysis is dominated by the Norrish Type 1 reaction, which has been reported previously, but with inconsistent quantum yields. The propanal α-hydrogen leads to a 4-center elimination of H2, as observed in CH3CHO, here leading to methylketene. The presence of hydrogen attached to the ß-carbon allows a new photochemical pathway: concerted triple fragmentation into CO + H2 + C2H4 via a 5-center transition state. Neither of these channels has been reported previously. No evidence for the previously reported C2H6 + CO, C2H4 + H2CO or CH3 + CH2CHO channels, nor for phototautomerization to 1-propenol (CH3CHâCHOH) was found. Modeling of the wavelength, pressure and collision partner dependence of the QYs allows us to reconcile the previous NT1a results and make recommendations for the quantum yields of all three channels under tropospheric conditions. The general impact of ß-hydrogen atoms in the photochemistry of aldehydes is to open up new pathways from cyclic transition states and to reduce the importance of other photolysis or isomerization channels.
RESUMO
Though there is a growing body of literature on the kinetics of CIs with simple carbonyls, CI reactions with functionalized carbonyls such as hydroxyketones remain unexplored. In this work, the temperature-dependent kinetics of the reactions of CH2OO with two hydroxyketones, hydroxyacetone (AcOH) and 4-hydroxy-2-butanone (4H2B), have been studied using a laser flash photolysis transient absorption spectroscopy technique and complementary quantum chemistry calculations. Bimolecular rate constants were determined from CH2OO loss rates observed under pseudo-first-order conditions across the temperature range 275-335 K. Arrhenius plots were linear and yielded T-dependent bimolecular rate constants: kAcOH(T) = (4.3 ± 1.7) × 10-15 exp[(1630 ± 120)/T] and k4H2B(T) = (3.5 ± 2.6) × 10-15 exp[(1700 ± 200)/T]. Both reactions show negative temperature dependences and overall very similar rate constants. Stationary points on the reaction energy surfaces were characterized using the composite CBS-QB3 method. Transition states were identified for both 1,3-dipolar cycloaddition reactions across the carbonyl and 1,2-insertion/addition at the hydroxyl group. The free-energy barriers for the latter reaction pathways are higher by â¼4-5 kcal mol-1, and their contributions are presumed to be negligible for both AcOH and 4H2B. The cycloaddition reactions are highly exothermic and form cyclic secondary ozonides that are the typical primary products of Criegee intermediate reactions with carbonyl compounds. The reactivity of the hydroxyketones toward CH2OO appears to be similar to that of acetaldehyde, which can be rationalized by consideration of the energies of the frontier molecular orbitals involved in the cycloaddition. The CH2OO + hydroxyketone reactions are likely too slow to be of significance in the atmosphere, except at very low temperatures.
RESUMO
Discussion can be an important and powerful tool in efforts to build a more diverse, equitable, and inclusive future for STEM (i.e., science, technology, engineering, and mathematics). However, facilitating discussions on difficult, complex, and often uncomfortable issues, like racism and sexism, can feel daunting. We outline a series of steps that can be used by educators to facilitate productive discussions that empower everyone to listen, contribute, learn, and ultimately act to transform STEM.
RESUMO
Rate constants for the reactions between the simplest Criegee intermediate, CH2OO, with acetone, the α-diketones biacetyl and acetylpropionyl, and the ß-diketones acetylacetone and 3,3-dimethyl-2,4-pentanedione have been measured at 295 K. CH2OO was produced photochemically in a flow reactor by 355 nm laser flash photolysis of diiodomethane in the presence of excess oxygen. Time-dependent concentrations were measured using broadband transient absorption spectroscopy, and the reaction kinetics was characterized under pseudo-first-order conditions. The bimolecular rate constant for the CH2OO + acetone reaction is measured to be (4.1 ± 0.4) × 10-13 cm3 s-1, consistent with previous measurements. The reactions of CH2OO with the ß-diketones acetylacetone and 3,3-dimethyl-2,5-pentanedione are found to have broadly similar rate constants of (6.6 ± 0.7) × 10-13 and (3.5 ± 0.8) × 10-13 cm3 s-1, respectively; these values may be cautiously considered as upper limits. In contrast, α-diketones react significantly faster, with rate constants of (1.45 ± 0.18) × 10-11 and (1.29 ± 0.15) × 10-11 cm3 s-1 measured for biacetyl and acetylpropionyl. The potential energy surfaces for these 1,3-dipolar cycloaddition reactions are characterized at the M06-2X/aug-cc-pVTZ and CBS-QB3 levels of theory and provide additional support to the observed experimental trends. The reactivity of carbonyl compounds with CH2OO is also interpreted by application of frontier molecular orbital theory and predicted using Hammett substituent constants. Finally, the results are compared with other kinetic studies of Criegee intermediate reactions with carbonyl compounds and discussed within the context of their atmospheric relevance.
RESUMO
Acetaldehyde plays an important role in oxidative cycles in the troposphere. Estimates of its air-water flux are important in global models. Biological degradation is believed to be the dominant loss process in water, but there have been few measurements, none in estuaries. Acetaldehyde degradation rates were measured in surface waters at the inflow to the Upper Newport Back Bay estuary in Orange County, Southern California, USA, over a 6-month period including the rainy winter season. Deuterated acetaldehyde was added to filtered and unfiltered water samples incubated in glass syringes, and its loss analyzed by purge and trap gas chromatography mass spectrometry. Filtered samples showed no significant degradation, suggesting that particle-mediated degradation is the dominant removal process. Correlation between measured degradation rate constants in unfiltered incubations and bacteria counts suggests the loss is due to microorganisms. Degradation in unfiltered samples followed first-order kinetics, with rate constants ranging from 0.0006 to 0.025 min-1 (k; average 0.0043 ± 0.006 min-1). Turnover (1/k) ranged from 40 to 1667 min, consistent with prior studies in coastal waters. Acetaldehyde concentrations in the estuary are estimated to range from 30 to ~500 nM (average ~250 nM). Results suggest the estuary is a source of acetaldehyde to the atmosphere.
Assuntos
Estuários , Poluentes Químicos da Água , Acetaldeído , California , Monitoramento Ambiental , Água do Mar , Poluentes Químicos da Água/análiseRESUMO
The photochemistry of glyoxylic acid (HC(O)C(O)OH) is explored in the near UV in both the singlet (S1/S0) and triplet (T1) manifolds using density functional theory (M06-2X/aug-cc-pVTZ) to reach an overall mechanistic picture of the atmospherically relevant photochemistry in the gas phase. The calculated energies and structures are also used in RRKM kinetics calculations to compare the relative reaction rates on each of these electronic states. The major photolysis pathways are two possible photodecarboxylation reactions: direct C-C bond cleavage (Norrish Type I reaction) and ß-hydrogen transfer followed by CO2 loss. These results indicate that from λ = 350-380 nm both photodecarboxylation pathways can occur following intersystem crossing to the T1 surface. However, hydrogen transfer-decarboxylation initiated on S1 becomes increasingly important at λ < 350 nm. At the lower energy UV wavelengths available in the atmosphere (λ = 380-400 nm), reactions can only occur in S0 where concerted hydrogen transfer-decarboxylation is the dominant dissociation pathway with some minor contributions from CO loss/decarbonylation reactions.
RESUMO
The first experimental observation of the primary photochemical channel of acetaldehyde leading to the formation of ketene (CH2CO) and hydrogen (H2) molecular products is reported. Acetaldehyde (CH3CHO) was photolysed in a molecular beam at 305.6 nm and the resulting H2 product characterized using velocity-map ion (VMI) imaging. Resonance-enhanced multiphoton ionization (REMPI), via two-photon excitation to the double-well EF 1Σ state, was used to state-selectively ionize the H2 and determine angular momentum distributions for H2 (ν = 0) and H2 (ν = 1). Velocity-map ion images were obtained for H2 (ν = 0 and 1, J = 5), allowing the total translational energy release of the photodissociation process to be determined. Following photolysis of CH3CHO in a gas cell, the CH2CO co-fragment was identified, using Fourier transform infrared spectroscopy, by its characteristic infrared absorption at 2150 cm-1. The measured quantum yield of the CH2CO + H2 product channel at 305.0 nm is φ = 0.0075 ± 0.0025 for both 15 Torr of neat CH3CHO and a mixture with 745 Torr of N2. Although small, this result has implications for the atmospheric photochemistry of carbonyls and this reaction represents a new tropospheric source of H2. Quasi-classical trajectory (QCT) simulations on a zero-point energy corrected reaction-path potential are also performed. The experimental REMPI and VMI image distributions are not consistent with the QCT simulations, indicating a non reaction-path mechanism should be considered.
RESUMO
The Norrish Type I photodissociation of two aliphatic aldehydes, propanal and isobutanal, has been investigated using velocity-map imaging. The HCO photoproduct of this reaction was probed using a 1+1 resonance-enhanced multiphoton ionization scheme via the 3p2Π Rydberg state. The velocity map images of HCO+ were collected across a range of photolysis energies for both species from 30 500 to 33 000 cm-1 (λ = 312-327 nm). The corresponding translational energy distributions show that the majority of the available energy goes into the translational motion of the products (55%-68%) with this fraction increasing as the T1 barrier is approached. Analysis of the translational energy distributions was also used to determine the aldehyde α C-C bond dissociation energies which were found to be 339.8 ± 2.5 and 331.2 ± 2.5 kJ/mol for propanal and isobutanal, respectively. These values were also found to be in good agreement with the computed dissociation energies using G4 and CCSD(T)/aug-cc-pVTZ//M062X/aug-cc-pVTZ levels of theory. Furthermore, these dissociation energies, combined with the known ΔfH (0 K) of the reaction products, provided the ΔfH (0 K) of propanal and isobutanal which were calculated to be -167.3 ± 2.5 and -184.0 ± 2.5 kJ/mol, respectively.
RESUMO
The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS(-) anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.
RESUMO
Photodissociation of the ozone molecule at 193.4 nm (6.41 eV) and 157.6 nm (7.87 eV) is studied by fast-beam translational spectroscopy. Coincident detection of the dissociation products allows direct observation of the 3-fragment channel and determination of its kinematic parameters. The results indicate that at each wavelength, 3-fragment dissociation proceeds through synchronous concerted bond breaking, but the energy partitioning among the fragments is different. The branching fraction of the 3-fragment channel increases from 5.2(6)% at 193.4 nm to 26(4)% at 157.6 nm, in agreement with previous studies. It is shown that vibrational excitation of the symmetric stretch mode in O3 molecules created by photodetachment of O(3)(-) anion enhances the absorption efficiency, especially at 193.4 nm, but does not have a strong effect on the 3-fragment dissociation.
Assuntos
Transtornos Dissociativos , Ozônio/química , Processos Fotoquímicos , Luz , Teoria Quântica , Análise Espectral , VibraçãoRESUMO
The photodissociation dynamics of the thiophenoxy radical (C6H5S) have been investigated using fast beam coincidence translational spectroscopy. Thiophenoxy radicals were produced by photodetachment of the thiophenoxide anion followed by photodissociation at 248 nm (5.0 eV), 193 nm (6.4 eV), and 157 nm (7.9 eV). Experimental results indicate two major competing dissociation channels leading to SH + C6H4 (o-benzyne) and CS + C5H5 (cyclopentadienyl) with a minor contribution of S + C6H5 (phenyl). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Transition states and minima for each reaction pathway were calculated using density functional theory to facilitate experimental interpretation. The proposed dissociation mechanism involves internal conversion from the initially prepared electronic excited state to the ground electronic state followed by statistical dissociation. Calculations show that SH loss involves a single isomerization step followed by simple bond fission. For both SH and S loss, C-S bond cleavage proceeds without an exit barrier. By contrast, the CS loss pathway entails multiple transition states and minima as it undergoes five membered ring formation and presents a small barrier with respect to products. The calculated reaction pathway is consistent with the experimental translational energy distributions in which the CS loss channel has a broader distribution peaking farther away from zero than the corresponding distributions for SH loss.
Assuntos
Raios Ultravioleta , Radicais Livres/química , Estrutura Molecular , Fenóis/química , Processos Fotoquímicos , Teoria Quântica , Análise Espectral , Compostos de Sulfidrila/química , Sulfetos/químicaRESUMO
The photodissociation of gas-phase I(2)Br(-) was investigated using fast beam photofragment translational spectroscopy. Anions were photodissociated from 300 to 270 nm (4.13-4.59 eV) and the recoiling photofragments were detected in coincidence by a time- and position-sensitive detector. Both two- and three-body channels were observed throughout the energy range probed. Analysis of the two-body dissociation showed evidence for four distinct channels: Br(-) + I(2), I(-) + IBr, Br+I(2) (-), and I + IBr(-). In three-body dissociation, Br((2)P(3∕2)) + I((2)P(3∕2)) + I(-) and Br(-) + I((2)P(3∕2)) + I((2)P(3∕2)) were produced primarily from a concerted decay mechanism. A sequential decay mechanism was also observed and attributed to Br(-)((1)S)+I(2)(B(3)Π(0u) (+)) followed by predissociation of I(2)(B).