Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 941: 173621, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815833

RESUMO

Environmental DNA (eDNA) is a technique increasingly used for monitoring organisms in the natural environment including riverine macroinvertebrates. However, the effectiveness of eDNA for monitoring riverine macroinvertebrates compared with the more traditional method of sampling the organisms directly and identifying them via morphological analysis, has not been well established. Furthermore, the ability of the various gene markers and PCR primer sets to detect the full range of riverine invertebrate taxa has not been quantified. Here we conducted a meta-analysis of the available literature, to assess the effectiveness of eDNA sampling for detecting riverine macroinvertebrates compared with sampling for the organisms directly and applying morphological analysis. We found, on average, eDNA sampling, irrespective of the gene marker used, detected fewer riverine invertebrates than morphological sampling. The most effective PCR primer set for identifying taxa was mlCOIintF/jgHCO2198, (mlCOIintF- forward primer, jgHCO2198, - reverse primer). Regardless of the gene marker or primer sets used, however, many taxa were not detected by eDNA metabarcoding that were detected by sampling directly for these invertebrates, including over 100 members of Arthropoda. eDNA sampling failed to detect any species belonging to Nematoda, Platyhelminthes, Cnidaria or Nematomorpha and these markers applied for eDNA sampling in terrestrial systems also do not detect members of Nematoda. In addition to these issues, uncertainties relating to false positives from upstream DNA sources, the stability of DNA from different species, differences in the propensity for DNA release into the environment for different organisms, and lack of available sequence information for numerous taxa illustrates the use of eDNA is not yet applicable as a robust stand-alone method for the monitoring of riverine invertebrates. As a primary consideration, further methodological developments are needed to ensure eDNA captures some of the key freshwater taxa, notably taxa belonging to the phyla Arthropoda, Nematoda, Platyhelminthes, Cnidaria and Nematomorpha.


Assuntos
DNA Ambiental , Monitoramento Ambiental , Invertebrados , Rios , Animais , Invertebrados/genética , Monitoramento Ambiental/métodos , DNA Ambiental/análise , Código de Barras de DNA Taxonômico/métodos
2.
Trends Microbiol ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38797653

RESUMO

Ignoring the dynamic nature of microbial communities risks underestimating the power of microbes to impact the health of their hosts. Microbiomes are thought to be important for host fitness, yet the coarse temporal scale and population-level focus of many studies precludes the ability to investigate the importance of among-individual variation in stability and identify the ecological contexts in which this variation matters. Here we briefly summarise current knowledge of temporal dynamics in wild host-associated microbial communities. We then discuss the implications of among-individual variation in microbiota stability and suggest analytical approaches for understanding these patterns. One major requirement is for future studies to conduct individual-level longitudinal analyses, with some systems already well set up for answering these questions.

3.
Sci Total Environ ; 912: 169079, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38049000

RESUMO

Globally, riverine system biodiversity is threatened by a range of stressors, spanning pollution, sedimentation, alterations to water flow, and climate change. Pesticides have been associated with population level impacts on freshwater invertebrates for acute high-level exposures, but far less is known about the chronic impact of episodic exposure to specific classes of pesticides or their mixtures. Here we employed the use of the UK Environment Agency's monitoring datasets over 40 years (covering years 1980 to 2019) to assess the impacts of AChE (acetylcholinesterase) and GABA (gamma-aminobutyric acid) receptor targeting pesticides on invertebrate family richness at English river sites. Concentrations of AChE and GABA pesticides toxic to freshwater invertebrates occurred (measured) across 18 of the 66 river sites assessed. For one of the three river sites (all found in the Midlands region of England) where data recorded over the past 40 years were sufficient for robust modelling studies, both AChE and GABA pesticides associated with invertebrate family richness. Here, where AChE total pesticide concentrations were classified as high, 46 of 64 invertebrate families were absent, and where GABA total pesticide concentration were classified as high, 16 of 64 invertebrate families were absent. Using a combination of field evidence and laboratory toxicity thresholds for population relevant endpoints we identify families of invertebrates most at risk in the selected English rivers to AChE and GABA pesticides. We, furthermore, provide strong evidence that the absence of the invertebrate family Polycentropodidae (caddisfly) from one field site is due to exposure effects to AChE pesticides.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Acetilcolinesterase , Insetos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Invertebrados , Água Doce , Monitoramento Ambiental , Ácido gama-Aminobutírico , Ecossistema
4.
PeerJ ; 11: e16682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130921

RESUMO

Gut-associated microbial communities are known to play a vital role in the health and fitness of their hosts. Though studies investigating the factors associated with among-individual variation in microbiome structure in wild animal species are increasing, knowledge of this variation at the individual level is scarce, despite the clear link between microbiome and nutritional status uncovered in humans and model organisms. Here, we combine detailed observational data on life history and foraging preference with 16S rRNA profiling of the faecal microbiome to investigate the relationship between diet, microbiome stability and rates of body mass gain in a migratory capital-breeding bird, the light-bellied Brent goose (Branta bernicla hrota). Our findings suggest that generalist feeders have microbiomes that are intermediate in diversity and composition between two foraging specialisms, and also show higher within-individual plasticity. We also suggest a link between foraging phenotype and the rates of mass gain during the spring staging of a capital breeder. This study offers rare insight into individual-level temporal dynamics of the gut microbiome of a wild host. Further work is needed to uncover the functional link between individual dietary choices, gut microbiome structure and stability, and the implications this has for the reproductive success of this capital breeder.


Assuntos
Microbioma Gastrointestinal , Gansos , Animais , Bactérias , Dieta/veterinária , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Gansos/microbiologia , Tamanho Corporal
5.
PeerJ ; 11: e16185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034867

RESUMO

Amphibians are the most threatened species-rich vertebrate group, with species extinctions and population declines occurring globally, even in protected and seemingly pristine habitats. These 'enigmatic declines' are generated by climate change and infectious diseases. However, the consequences of these declines are undocumented as no baseline ecological data exists for most affected areas. Like other neotropical countries, Costa Rica, including Área de Conservación Guanacaste (ACG) in north-western Costa Rica, experienced rapid amphibian population declines and apparent extinctions during the past three decades. To delineate amphibian diversity patterns within ACG, a large-scale comparison of multiple sites and habitats was conducted. Distance and time constrained visual encounter surveys characterised species richness at five sites-Murciélago (dry forest), Santa Rosa (dry forest), Maritza (mid-elevation dry-rain forest intersect), San Gerardo (rainforest) and Cacao (cloud forest). Furthermore, species-richness patterns for Cacao were compared with historic data from 1987-8, before amphibians declined in the area. Rainforests had the highest species richness, with triple the species of their dry forest counterparts. A decline of 45% (20 to 11 species) in amphibian species richness was encountered when comparing historic and contemporary data for Cacao. Conservation efforts sometimes focus on increasing the resilience of protected areas, by increasing their range of ecosystems. In this sense ACG is unique containing many tropical ecosystems compressed in a small geographic space, all protected and recognised as a UNESCO world heritage site. It thus provides an extraordinary platform to understand changes, past and present, and the resilience of tropical ecosystems and assemblages, or lack thereof, to climate change.


Assuntos
Anfíbios , Ecossistema , Animais , Costa Rica , Florestas , Espécies em Perigo de Extinção
6.
Sci Total Environ ; 903: 166519, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640080

RESUMO

Globally freshwater biodiversity has experienced major decline and chemical pollutants are believed to have played a significant role in this decline, but this has not been well quantified for most riverine invertebrate populations. Here we applied a biogeographically independent trait-based bioindicator, SPEARpesticides across sites across five regions (Northern, Midlands and Western, Anglian, Southeast, and Southwest) in England to investigate for associations specifically between pesticide use/pollution and riverine invertebrate communities over a 55-year period (1965-2019). Both spatially and temporally post-1990, the Anglian and Thames regions consistently showed the lowest SPEARpesticides scores, illustrating the presence of fewer pesticide sensitive species. The Anglian region had the highest pesticide use compared to all other regions from 1990 to 2018 and there were negative relationships between the level of pesticide/insecticide use and the regional SPEARpesticides score. Biochemical Oxygen Demand and ammonia, as measures of general water quality, were also negatively correlated with the SPEARpesticides scores across the regions, but these factors were not the driver for the lower SPEARpesticides scores seen in the Anglian region. Based on SPEARpesticides scores, riverine invertebrate communities in England have been most impacted in the Anglian region and we evidence chronic insecticide exposure is likely a significant factor in shaping the status of those invertebrate communities.

7.
PeerJ ; 10: e14081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193424

RESUMO

Background: With conventional coral reef conservation methods proving ineffective against intensifying climate change, efforts have focussed on augmenting coral tolerance to warmer water-the primary driver of coral declines. We document coral cover and composition in relation to sea surface temperature (SST) over 25-years, of six marginal reefs in an upwelling area of Costa Rica's Eastern Tropical Pacific. Methods: Using reef survey data and sea surface temperature (SST) dating back over 25-years, we document coral cover and composition of six marginal reefs in an upwelling area of Costa Rica's Eastern Tropical Pacific in relation to thermal highs and lows. Results: A ubiquitous and catastrophic coral die-off event occurred in 2009, driven by SST minima and likely by the presence of extreme harmful algal blooms. Coral cover was dramatically reduced and coral composition shifted from dominant branching Pocillopora to massive Pavona, Porites, and Gardineroseris. The lack of coral recovery in the decade since indicates a breach in ecosystem tipping-point and highlights a need for resilience-based management (RBM) and restoration. We propose a locally tailored and globally scalable approach to coral reef declines that is founded in RBM and informed by coral health dynamics.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Proliferação Nociva de Algas , Água
8.
Microbiome ; 10(1): 44, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272699

RESUMO

BACKGROUND: The fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. METHODS: Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. RESULTS: Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. CONCLUSIONS: Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. Video Abstract.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Animais , Anuros/genética , Anuros/microbiologia , Quitridiomicetos/genética , Microbiota/genética , Micoses/microbiologia , Micoses/veterinária , RNA Ribossômico 16S/genética
9.
J Evol Biol ; 35(4): 589-598, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35167143

RESUMO

The putatively positive association between host genetic diversity and the ability to defend against pathogens has long attracted the attention of evolutionary biologists. Chytridiomycosis, a disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has emerged in recent decades as a cause of dramatic declines and extinctions across the amphibian clade. Bd susceptibility can vary widely across populations of the same species, but the relationship between standing genetic diversity and susceptibility has remained notably underexplored so far. Here, we focus on a putatively Bd-naive system of two mainland and two island populations of the common toad (Bufo bufo) at the edge of the species' range and use controlled infection experiments and dd-RAD sequencing of >10 000 SNPs across 95 individuals to characterize the role of host population identity, genetic variation and individual body mass in mediating host response to the pathogen. We found strong genetic differentiation between populations and marked variation in their susceptibility to Bd. This variation was not, however, governed by isolation-mediated genetic erosion, and individual heterozygosity was even found to be negatively correlated with survival. Individual survival during infection experiments was strongly positively related to body mass, which itself was unrelated to population of origin or heterozygosity. Our findings underscore the general importance of context-dependency when assessing the role of host genetic variation for the ability of defence against pathogens.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Quitridiomicetos/genética , Humanos , Micoses/epidemiologia , Micoses/microbiologia
10.
Biol Lett ; 17(10): 20210409, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665991

RESUMO

As telomere length (TL) often predicts survival and lifespan, there is considerable interest in the origins of inter-individual variation in TL. Cross-generational effects of parental age on offspring TL are thought to be a key source of variation, but the rarity of longitudinal studies that examine the telomeres of successive offspring born throughout the lives of parents leaves such effects poorly understood. Here, we exploit TL measures of successive offspring produced throughout the long breeding tenures of parents in wild white-browed sparrow weaver (Plocepasser mahali) societies, to isolate the effects of within-parent changes in age on offspring TLs. Our analyses reveal the first evidence to date of a positive within-parent effect of advancing age on offspring TL: as individual parents age, they produce offspring with longer telomeres (a modest effect that persists into offspring adulthood). We consider the potential for pre- and post-natal mechanisms to explain our findings. As telomere attrition predicts offspring survival to adulthood in this species, this positive parental age effect could impact parent and offspring fitness if it arose via differential telomere attrition during offspring development. Our findings support the view that cross-generational effects of parental age can be a source of inter-individual variation in TL.


Assuntos
Pardais , Telômero , Animais , Animais Selvagens , Longevidade , Telômero/genética , Encurtamento do Telômero
11.
Mol Ecol ; 30(22): 5831-5843, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494339

RESUMO

Social environments influence multiple traits of individuals including immunity, stress and ageing, often in sex-specific ways. The composition of the microbiome (the assemblage of symbiotic microorganisms within a host) is determined by environmental factors and the host's immune, endocrine and neural systems. The social environment could alter host microbiomes extrinsically by affecting transmission between individuals, probably promoting homogeneity in the microbiome of social partners. Alternatively, intrinsic effects arising from interactions between the microbiome and host physiology (the microbiota-gut-brain axis) could translate social stress into dysbiotic microbiomes, with consequences for host health. We investigated how manipulating social environments during larval and adult life-stages altered the microbiome composition of Drosophila melanogaster fruit flies. We used social contexts that particularly alter the development and lifespan of males, predicting that any intrinsic social effects on the microbiome would therefore be sex-specific. The presence of adult males during the larval stage significantly altered the microbiome of pupae of both sexes. In adults, same-sex grouping increased bacterial diversity in both sexes. Importantly, the microbiome community structure of males was more sensitive to social contact at older ages, an effect partially mitigated by housing focal males with young rather than coaged groups. Functional analyses suggest that these microbiome changes impact ageing and immune responses. This is consistent with the hypothesis that the substantial effects of the social environment on individual health are mediated through intrinsic effects on the microbiome, and provides a model for understanding the mechanistic basis of the microbiota-gut-brain axis.


Assuntos
Drosophila melanogaster , Microbiota , Fatores Etários , Animais , Eixo Encéfalo-Intestino , Drosophila melanogaster/genética , Feminino , Masculino , Microbiota/genética , Meio Social
12.
Proc Biol Sci ; 288(1957): 20210552, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403636

RESUMO

Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.


Assuntos
Microbiota , Micobioma , Animais , Bactérias/genética , Interações entre Hospedeiro e Microrganismos , Filogenia
13.
Philos Trans R Soc Lond B Biol Sci ; 376(1831): 20200227, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34176325

RESUMO

Recent advances in tagging and biologging technology have yielded unprecedented insights into wild animal physiology. However, time-series data from such wild tracking studies present numerous analytical challenges owing to their unique nature, often exhibiting strong autocorrelation within and among samples, low samples sizes and complicated random effect structures. Gleaning robust quantitative estimates from these physiological data, and, therefore, accurate insights into the life histories of the animals they pertain to, requires careful and thoughtful application of existing statistical tools. Using a combination of both simulated and real datasets, I highlight the key pitfalls associated with analysing physiological data from wild monitoring studies, and investigate issues of optimal study design, statistical power, and model precision and accuracy. I also recommend best practice approaches for dealing with their inherent limitations. This work will provide a concise, accessible roadmap for researchers looking to maximize the yield of information from complex and hard-won biologging datasets. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.


Assuntos
Fisiologia/instrumentação , Vertebrados/fisiologia , Animais , Fatores de Tempo
14.
Ecol Evol ; 11(6): 2717-2730, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767831

RESUMO

A wide array of technologies are available for gaining insight into the movement of wild aquatic animals. Although acoustic telemetry can lack the fine-scale spatial resolution of some satellite tracking technologies, the substantially longer battery life can yield important long-term data on individual behavior and movement for low per-unit cost. Typically, however, receiver arrays are designed to maximize spatial coverage at the cost of positional accuracy leading to potentially longer detection gaps as individuals move out of range between monitored locations. This is particularly true when these technologies are deployed to monitor species in hard-to-access locations.Here, we develop a novel approach to analyzing acoustic telemetry data, using the timing and duration of gaps between animal detections to infer different behaviors. Using the durations between detections at the same and different receiver locations (i.e., detection gaps), we classify behaviors into "restricted" or potential wider "out-of-range" movements synonymous with longer distance dispersal. We apply this method to investigate spatial and temporal segregation of inferred movement patterns in two sympatric species of reef shark within a large, remote, marine protected area (MPA). Response variables were generated using network analysis, and drivers of these movements were identified using generalized linear mixed models and multimodel inference.Species, diel period, and season were significant predictors of "out-of-range" movements. Silvertip sharks were overall more likely to undertake "out-of-range" movements, compared with gray reef sharks, indicating spatial segregation, and corroborating previous stable isotope work between these two species. High individual variability in "out-of-range" movements in both species was also identified.We present a novel gap analysis of telemetry data to help infer differential movement and space use patterns where acoustic coverage is imperfect and other tracking methods are impractical at scale. In remote locations, inference may be the best available tool and this approach shows that acoustic telemetry gap analysis can be used for comparative studies in fish ecology, or combined with other research techniques to better understand functional mechanisms driving behavior.

15.
J Anim Ecol ; 89(4): 1109-1121, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872434

RESUMO

Emerging infectious diseases are responsible for declines in wildlife populations around the globe. Mass mortality events associated with emerging infectious diseases are often associated with high number of infected individuals (prevalence) and high pathogen loads within individuals (intensity). At the landscape scale, spatial and temporal variation in environmental conditions can alter the relationship between these infection parameters and blur the overall picture of disease dynamics. Quantitative estimates of how infection parameters covary with environmental heterogeneity at the landscape scale are scarce. If we are to identify wild populations at risk of disease epidemics, we must elucidate the factors that shape, and potentially decouple, the link between pathogen prevalence and intensity of infection over complex ecological landscapes. Using a network of 41 populations of the amphibian host Rana pipiens in Ontario, Canada, we present the spatial and temporal heterogeneity in pathogen prevalence and intensity of infection of the chytrid fungus Batrachochytrium dendrobatidis (Bd), across a 3-year period. We then quantify how covariation between both infection parameters measured during late summer is modified by previously experienced spatiotemporal environmental heterogeneity across 14 repeat sampled populations. Late summer Bd infection parameters are governed, at least in part, by different environmental factors operating during separate host life-history events. Our results provide evidence for a relationship between Bd prevalence and thermal regimes prior to host breeding at the site level, and a relationship between intensity of infection and aquatic conditions (precipitation, hydroshed size and river density) throughout host breeding period at the site level. This demonstrates that microclimatic variation within temporal windows can drive divergent patterns of pathogen dynamics within and across years, by effecting changes in host behaviour which interfere with the pathogen's ability to infect and re-infect hosts. A clearer understanding of the role that spatiotemporal heterogeneity has upon infection parameters will provide valuable insights into host-pathogen epidemiology, as well as more fundamental aspects of the ecology and evolution of interspecific interactions.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Micoses/epidemiologia , Micoses/veterinária , Ontário/epidemiologia , Estações do Ano
16.
Front Microbiol ; 10: 1834, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507541

RESUMO

The emerging fungal pathogen, Batrachochytrium salamandrivorans (Bsal) is responsible for the catastrophic decline of European salamanders and poses a threat to amphibians globally. The amphibian skin microbiome can influence disease outcome for several host-pathogen systems, yet little is known of its role in Bsal infection. In addition, many experimental in-vivo amphibian disease studies to date have relied on specimens that have been kept in captivity for long periods without considering the influence of environment on the microbiome and how this may impact the host response to pathogen exposure. We characterized the impact of captivity and exposure to Bsal on the skin bacterial and fungal communities of two co-occurring European newt species, the smooth newt, Lissotriton vulgaris and the great-crested newt, Triturus cristatus. We show that captivity led to significant losses in bacterial and fungal diversity of amphibian skin, which may be indicative of a decline in microbe-mediated protection. We further demonstrate that in both L. vulgaris and T. cristatus, Bsal infection was associated with changes in the composition of skin bacterial communities with possible negative consequences to host health. Our findings advance current understanding of the role of host-associated microbiota in Bsal infection and highlight important considerations for ex-situ amphibian conservation programmes.

17.
Front Microbiol ; 10: 1245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281291

RESUMO

There is growing appreciation of the important role of commensal microbes in ensuring the normal function and health of their hosts, including determining how hosts respond to pathogens. A range of infectious diseases are threatening amphibians worldwide, and evidence is accumulating that the host-associated bacteria that comprise the microbiome may be key in mediating interactions between amphibian hosts and infectious pathogens. We used 16S rRNA amplicon sequencing to quantify the skin microbial community structure of over 200 individual wild adult European common frogs (Rana temporaria), from ten populations with contrasting history of the lethal disease ranavirosis, caused by emerging viral pathogens belonging to the genus Ranavirus. All populations had similar species richness irrespective of disease history, but populations that have experienced historical outbreaks of ranavirosis have a distinct skin microbiome structure (beta diversity) when compared to sites where no outbreaks of the disease have occurred. At the individual level, neither age, body length, nor sex of the frog could predict the structure of the skin microbiota. Our data potentially support the hypothesis that variation among individuals in skin microbiome structure drive differences in susceptibility to infection and lethal outbreaks of disease. More generally, our results suggest that population-level processes are more important for driving differences in microbiome structure than variation among individuals within populations in key life history traits such as age and body size.

18.
Front Microbiol ; 10: 3134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038568

RESUMO

Host-associated microbes form an important component of immunity that protect against infection by pathogens. Treating wild individuals with these protective microbes, known as probiotics, can reduce rates of infection and disease in both wild and captive settings. However, the utility of probiotics for tackling wildlife disease requires that they offer consistent protection across the broad genomic variation of the pathogen that hosts can encounter in natural settings. Here we develop multi-isolate probiotic consortia with the aim of effecting broad-spectrum inhibition of growth of the lethal amphibian pathogen Batrachochytrium dendrobatidis (Bd) when tested against nine Bd isolates from two distinct lineages. Though we achieved strong growth inhibition between 70 and 100% for seven Bd isolates, two isolates appeared consistently resistant to inhibition, irrespective of probiotic strategy employed. We found no evidence that genomic relatedness of the chytrid predicted similarity of inhibition scores, nor that increasing the genetic diversity of the bacterial consortia could offer stronger inhibition of pathogen growth, even for the two resistant isolates. Our findings have important consequences for the application of probiotics to mitigate wildlife diseases in the face of extensive pathogen genomic variation.

19.
Front Microbiol ; 10: 2883, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31956320

RESUMO

Variation among animals in their host-associated microbial communities is increasingly recognized as a key determinant of important life history traits including growth, metabolism, and resistance to disease. Quantitative estimates of the factors shaping the stability of host microbiomes over time at the individual level in non-model organisms are scarce. Addressing this gap in our knowledge is important, as variation among individuals in microbiome stability may represent temporal gain or loss of key microbial species and functions linked to host health and/or fitness. Here we use controlled experiments to investigate how both heterogeneity in microbial species richness of the environment and exposure to the emerging pathogen Ranavirus influence the structure and temporal dynamics of the skin microbiome in a vertebrate host, the European common frog (Rana temporaria). Our evidence suggests that altering the bacterial species richness of the environment drives divergent temporal microbiome dynamics of the amphibian skin. Exposure to ranavirus effects changes in skin microbiome structure irrespective of total microbial diversity, but individuals with higher pre-exposure skin microbiome diversity appeared to exhibit higher survival. Higher diversity skin microbiomes also appear less stable over time compared to lower diversity microbiomes, but stability of the 100 most abundant ("core") community members was similar irrespective of microbiome richness. Our study highlights the importance of extrinsic factors in determining the stability of host microbiomes over time, which may in turn have important consequences for the stability of host-microbe interactions and microbiome-fitness correlations.

20.
PeerJ ; 6: e5949, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479902

RESUMO

Infectious diseases can alter the demography of their host populations, reducing their viability even in the absence of mass mortality. Amphibians are the most threatened group of vertebrates globally, and emerging infectious diseases play a large role in their continued population declines. Viruses belonging to the genus Ranavirus are responsible for one of the deadliest and most widespread of these diseases. To date, no work has used individual level data to investigate how ranaviruses affect population demographic structure. We used skeletochronology and morphology to evaluate the impact of ranaviruses on the age structure of populations of the European common frog (Rana temporaria) in the UK. We compared ecologically similar populations that differed most notably in their historical presence or absence of ranavirosis (the acute syndrome caused by ranavirus infection). Our results suggest that ranavirosis may truncate the age structure of R. temporaria populations. One potential explanation for such a shift might be increased adult mortality and subsequent shifts in the life history of younger age classes that increase reproductive output earlier in life. Additionally, we constructed population projection models which indicated that such increased adult mortality could heighten the vulnerability of frog populations to stochastic environmental challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA