Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 13(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39056750

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.


Assuntos
Cardiomiopatias , Mitocôndrias , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Humanos , Cardiomiopatias/terapia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/etiologia , Animais , Mitocôndrias/metabolismo , Distrofina/metabolismo , Distrofina/genética , Distrofina/deficiência
2.
JCI Insight ; 9(11)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713520

RESUMO

Clinical trials delivering high doses of adeno-associated viruses (AAVs) expressing truncated dystrophin molecules (microdystrophins) are underway for Duchenne muscular dystrophy (DMD). We examined the efficiency and efficacy of this strategy with 4 microdystrophin constructs (3 in clinical trials and a variant of the largest clinical construct), in a severe mouse model of DMD, using AAV doses comparable with those in clinical trials. We achieved high levels of microdystrophin expression in striated muscles with cardiac expression approximately 10-fold higher than that observed in skeletal muscle. Significant, albeit incomplete, correction of skeletal muscle disease was observed. Surprisingly, a lethal acceleration of cardiac disease occurred with 2 of the microdystrophins. The detrimental cardiac effect appears to be caused by variable competition (dependent on microdystrophin design and expression level) between microdystrophin and utrophin at the cardiomyocyte membrane. There may also be a contribution from an overloading of protein degradation. The significance of these observations for patients currently being treated with AAV-microdystrophin therapies is unclear since the levels of expression being achieved in the DMD hearts are unknown. However, these findings suggest that microdystrophin treatments need to avoid excessively high levels of expression in the heart and that cardiac function should be carefully monitored in these patients.


Assuntos
Terapia Genética , Distrofia Muscular de Duchenne , Animais , Humanos , Masculino , Camundongos , Dependovirus/genética , Modelos Animais de Doenças , Distrofina/genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/metabolismo , Utrofina/genética , Utrofina/metabolismo
3.
J Subst Use Addict Treat ; 157: 209181, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37858794

RESUMO

BACKGROUND: Most patients in opioid treatment programs (OTPs) attend daily for observed dosing. A Stage IA (create and adapt) and a Stage IB (feasibility and pilot) mixed method studies tested a web-application (app) designed to facilitate access to take-home methadone. METHODS: A Stage IA, intervention development study, used qualitative interviews to assess the usability (ease of use) and feasibility (ability to implement) of a take-home methadone app. The Stage IA market research was a two-week test with 96 patient participants from four OTPs. Qualitative interviews were completed with 20 systematically selected individuals who used the take-home app and 20 OTP clinicians (five each from the four OTPs). The Stage IB Small Business Innovation Research (SBIR) study (24 patients and 8 clinicians in a single OTP) included quantitative assessments of the app's usability, acceptability, appropriateness, and feasibility. Thematic analysis coded participant and staff assessments of the take-home app. RESULTS: Stage IA patients (mean age = 41 years; 52 % men, 57 % White) and IB patients (mean age = 38 years, 54 % men, 79 % White) described the app as "easy to use." Compared to unsupervised take-homes, some patients preferred using the take-home app. In Stage IB, patients rated the app highly on standardized measures of usability, acceptability, appropriateness, and feasibility. Clinician ratings were more ambivalent. Patients rated in-clinic dosing as more disruptive than unsupervised take-homes and take-homes using the app. DISCUSSION: A Stage IA study informed the development and maturation of a Stage IB feasibility pilot study. Overall, the take-home app's usability, acceptability, appropriateness, and feasibility were rated positively. Clinical staff ratings were less positive, but individuals commented that using the app a) enhanced patient quality of life, b) provided new tools for counselors, and c) offered competitive advantages. The SBIR award enhanced market research with more complete and systematic data collection and analysis.


Assuntos
Analgésicos Opioides , Aplicativos Móveis , Masculino , Humanos , Adulto , Feminino , Analgésicos Opioides/uso terapêutico , Metadona/uso terapêutico , Estudos de Viabilidade , Projetos Piloto , Qualidade de Vida , Empresa de Pequeno Porte
4.
NMR Biomed ; 36(3): e4869, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36331178

RESUMO

Rodent models of Duchenne muscular dystrophy (DMD) often do not recapitulate the severity of muscle wasting and resultant fibro-fatty infiltration observed in DMD patients. Having recently documented severe muscle wasting and fatty deposition in two preclinical models of muscular dystrophy (Dysferlin-null and mdx mice) through apolipoprotein E (ApoE) gene deletion without and with cholesterol-, triglyceride-rich Western diet supplementation, we sought to determine whether magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) could be used to detect, characterize, and compare lipid deposition in mdx-ApoE knockout with mdx mice in a diet-dependent manner. MRI revealed that both mdx and mdx-ApoE mice exhibited elevated proton relaxation time constants (T2 ) in their lower hindlimbs irrespective of diet, indicating both chronic muscle damage and fatty tissue deposition. The mdx-ApoE mice on a Western diet (mdx-ApoEW ) presented with greatest fatty tissue infiltration in the posterior compartment of the hindlimb compared with other groups, as detected by MRI/MRS. High-resolution magic angle spinning confirmed elevated lipid deposition in the posterior compartments of mdx-ApoEW mice in vivo and ex vivo, respectively. In conclusion, the mdx-ApoEW model recapitulates some of the extreme fatty tissue deposition observed clinically in DMD muscle but typically absent in mdx mice. This preclinical model will help facilitate the development of new imaging modalities directly relevant to the image contrast generated in DMD, and help to refine MR-based biomarkers and their relationship to tissue structure and disease progression.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/patologia , Camundongos Endogâmicos mdx , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Colesterol , Apolipoproteínas E , Modelos Animais de Doenças
5.
Artigo em Inglês | MEDLINE | ID: mdl-37206988

RESUMO

The potential use of the D2.mdx mouse (the mdx mutation on the DBA/2J genetic background) as a preclinical model of the cardiac aspects of Duchenne muscular dystrophy (DMD) has been criticized based on speculation that the DBA/2J genetic background displays an inherent hypertrophic cardiomyopathy (HCM) phenotype. Accordingly, the goal of the current study was to further examine the cardiac status of this mouse strain over a 12-month period to determine if observable signs of HCM develop, including histopathology and pathological enlargement of the myocardium. Previous reports have documented heightened TGFß signaling in the DBA2/J striated muscles, as compared to the C57 background, which, as expected, is manifested as increased cardiomyocyte size, wall thickness, and heart mass as compared to the C57 background. While normalized heart mass is larger in the DBA/2J mice, compared to age-matched C57/BL10 mice, both strains similarly increase in size from 4 to 12 months of age. We also report that DBA/2J mice contain equivalent amounts of left ventricular collagen as healthy canine and human samples. In a longitudinal echocardiography study, neither sedentary nor exercised DBA/2J mice demonstrated left ventricular wall thickening or cardiac functional deficits. In summary, we find no evidence of HCM, nor any other cardiac pathology, and thus propose that it is an appropriate background strain for genetic modeling of cardiac diseases, including the cardiomyopathy associated with DMD.

6.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519272

RESUMO

Skeletal muscle fibers are multinucleated cellular giants formed by the fusion of mononuclear myoblasts. Several molecules involved in myoblast fusion have been discovered, and finger-like projections coincident with myoblast fusion have also been implicated in the fusion process. The role of these cellular projections in muscle cell fusion was investigated herein. We demonstrate that these projections are filopodia generated by class X myosin (Myo10), an unconventional myosin motor protein specialized for filopodia. We further show that Myo10 is highly expressed by differentiating myoblasts, and Myo10 ablation inhibits both filopodia formation and myoblast fusion in vitro. In vivo, Myo10 labels regenerating muscle fibers associated with Duchenne muscular dystrophy and acute muscle injury. In mice, conditional loss of Myo10 from muscle-resident stem cells, known as satellite cells, severely impairs postnatal muscle regeneration. Furthermore, the muscle fusion proteins Myomaker and Myomixer are detected in myoblast filopodia. These data demonstrate that Myo10-driven filopodia facilitate multinucleated mammalian muscle formation.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos Esqueléticos/metabolismo , Miosinas/metabolismo , Pseudópodes/metabolismo , Animais , Diferenciação Celular , Fusão Celular , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mioblastos Esqueléticos/patologia , Miosinas/genética , Pseudópodes/genética , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Fatores de Tempo
7.
Sci Rep ; 10(1): 14070, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826942

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscle degenerative disease caused by loss of dystrophin protein. DMD has no cure and few treatment options. Preclinical efforts to identify potential DMD therapeutics have been hampered by lack of a small animal model that recapitulates key features of the human disease. While the dystrophin-deficient mdx mouse on the C57BL/10 genetic background (B10.mdx) is mildly affected, a more severe muscle disease is observed when the mdx mutation is crossed onto the DBA/2J genetic background (D2.mdx). In this study, the functional and histological progression of the D2.mdx skeletal muscle pathology was evaluated to determine the distinguishing features of disease. Data herein details the muscular weakness and wasting exhibited by D2.mdx skeletal muscle, as well as severe histopathological features, which include the rapid progression of fibrosis and calcifications in the diaphragm and progressive fibrosis accumulation in limb muscles. Furthermore, a timeline of D2.mdx progression is provided that details distinct stages of disease progression. These data support the D2.mdx as a superior small animal model for DMD, as compared to the B10.mdx model. The insights provided in this report should facilitate the design of preclinical evaluations for potential DMD therapeutics.


Assuntos
Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distribuição Aleatória , Manejo de Espécimes , Transcriptoma
8.
JCI Insight ; 5(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31830002

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating genetic muscle disease resulting in progressive muscle degeneration and wasting. Glucocorticoids, specifically prednisone/prednisolone and deflazacort, are commonly used by DMD patients. Emerging DMD therapeutics include those targeting the muscle-wasting factor, myostatin (Mstn). The aim of this study was to investigate how chronic glucocorticoid treatment impacts the efficacy of Mstn inhibition in the D2.mdx mouse model of DMD. We report that chronic treatment of dystrophic mice with prednisolone (Pred) causes significant muscle wasting, entailing both activation of the ubiquitin-proteasome degradation pathway and inhibition of muscle protein synthesis. Combining Pred with Mstn inhibition, using a modified Mstn propeptide (dnMstn), completely abrogates the muscle hypertrophic effects of Mstn inhibition independently of Mstn expression or SMAD3 activation. Transcriptomic analysis identified that combining Pred with dnMstn treatment affects gene expression profiles associated with inflammation, metabolism, and fibrosis. Additionally, we demonstrate that Pred-induced muscle atrophy is not prevented by Mstn ablation. Therefore, glucocorticoids interfere with potential muscle mass benefits associated with targeting Mstn, and the ramifications of glucocorticoid use should be a consideration during clinical trial design for DMD therapeutics. These results have significant implications for past and future Mstn inhibition trials in DMD.


Assuntos
Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Hipertrofia/metabolismo , Distrofias Musculares/tratamento farmacológico , Miostatina/efeitos dos fármacos , Miostatina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Miostatina/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA