RESUMO
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multiorgan involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong Ab production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 wk postinfection. Therefore, we hypothesized that dysfunctional cell-mediated Ab responses downstream of Ab production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, whereas NK cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Taken together, our results reveal dysregulation in Ab-mediated cellular responses of myeloid and NK cells that likely contribute to the immune pathology of this disease.
RESUMO
Many mouse models of SARS-CoV-2 infection involve expression of the human ACE2 protein, the entry receptor for SARS-CoV-2 Spike protein, in mouse tissues. However, most of these models suffer from nonphysiological regulation of ACE2 expression, which can lead to atypically severe infections and aberrant sites of viral replication. In this report, we developed and characterized an ACE2 gene replacement (ACE2-GR) mouse strain in which the mouse Ace2 genomic locus was replaced by the entire human ACE2 gene locus, and we investigated the ability of these animals to respond to SARS-CoV-2 infection. We show that ACE2-GR mice support SARS-CoV-2 viral replication, but, in stark contrast to the widely used K18-hACE2 transgenic model, this infection leads to a mild disease with no detectable involvement of the CNS. Thus, ACE2-GR mice provide a novel, to our knowledge, model to explore immune responses and long-term consequences of SARS-CoV-2 infection.
Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Modelos Animais de Doenças , Progressão da Doença , SARS-CoV-2 , Replicação Viral , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Camundongos , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Humanos , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Camundongos Endogâmicos C57BLRESUMO
SARS-CoV-2 virus has continued to evolve over time necessitating the adaptation of vaccines to maintain efficacy. Monoclonal antibodies (mAbs) against SARS-CoV-2 were a key line of defense for unvaccinated or immunocompromised individuals. However, these mAbs are now ineffective against current SARS-CoV-2 variants. Here, we tested three aspects of αSARS-CoV-2 therapeutics. First, we tested whether Fc engagement is necessary for in vivo clearance of SARS-CoV-2. Secondly, we tested bi-specific killer engagers (BiKEs) that simultaneously engage SARS-CoV-2 and a specific Fc receptor. Benefits of these engagers include the ease of manufacturing, stability, more cell-specific targeting, and high affinity binding to Fc receptors. Using both mAbs and BiKEs, we found that both neutralization and Fc receptor engagement were necessary for effective SARS-CoV-2 clearance. Thirdly, due to ACE2 being necessary for viral entry, ACE2 will maintain binding to SARS-CoV-2 despite viral evolution. Therefore, we used an ACE2 decoy Fc-fusion or BiKE, instead of an anti-SARS-CoV-2 antibody sequence, as a potential therapeutic that would withstand viral evolution. We found that the ACE2 decoy approach also required Fc receptor engagement and, unlike traditional neutralizing antibodies against specific variants, enabled the clearance of two distinct SARS-CoV-2 variants. These data show the importance of Fc engagement for mAbs, the utility of BiKEs as therapies for infectious disease, and the in vivo effectiveness of the ACE2 decoy approach. With further studies, we predict combining neutralization, the cellular response, and this ACE2 decoy approach will benefit individuals with ineffective antibody levels. Abbreviations: ACE2, scFv, mAb, BiKE, COVID-19, Fc, CD16, CD32b, CD64, d.p.i. Key points: With equal dosing, both neutralization and Fc engagement are necessary for the optimal efficacy of in vivo antibodies and bi-specific killer engagers (BiKEs) against SARS-CoV-2. BiKEs can clear SARS-CoV-2 virus and protect against severe infection in the hACE2-K18 mouse model. ACE2 decoys as part of Fc-fusions or BiKEs provide in vivo clearance of two disparate SARS-CoV-2 variants.
RESUMO
Plasmodium falciparum infection can trigger high levels of inflammation that lead to fever and sometimes severe disease. People living in malaria-endemic areas gradually develop resistance to symptomatic malaria and control both parasite numbers and the inflammatory response. We previously found that adaptive natural killer (NK) cells correlate with reduced parasite load and protection from symptoms. We also previously found that murine NK cell production of IL-10 can protect mice from experimental cerebral malaria. Human NK cells can also secrete IL-10, but it was unknown what NK cell subsets produce IL-10 and if this is affected by malaria experience. We hypothesize that NK cell immunoregulation may lower inflammation and reduce fever induction. Here, we show that NK cells from subjects with malaria experience make significantly more IL-10 than subjects with no malaria experience. We then determined the proportions of NK cells that are cytotoxic and produce interferon gamma and/or IL-10 and identified a signature of adaptive and checkpoint molecules on IL-10-producing NK cells. Lastly, we find that co-culture with primary monocytes, Plasmodium -infected RBCs, and antibody induces IL-10 production by NK cells. These data suggest that NK cells may contribute to protection from malaria symptoms via IL-10 production.
RESUMO
Multisystem Inflammatory Syndrome in Children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multi-organ involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong antibody production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 weeks after infection. Therefore, we hypothesized that dysfunctional cell-mediated antibody responses downstream of antibody production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, while natural killer (NK) cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Together, our results reveal dysregulation in antibody-mediated cellular responses unique to MIS-C that likely contribute to the immune pathology of this disease.
RESUMO
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-ß inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Assuntos
Células Matadoras Naturais , Viroses , Humanos , Viroses/terapia , Imunoterapia AdotivaRESUMO
CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.
Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Quinase Syk/genética , Sistemas CRISPR-Cas , Células Matadoras Naturais , Citocinas , Citotoxicidade Celular Dependente de AnticorposRESUMO
There is no cure for HIV infection, and lifelong antiretroviral therapy (ART) is required. N-803 is an IL-15 superagonist comprised of an N72D mutant IL-15 molecule attached to its alpha receptor and a human IgG1 fragment designed to increase IL-15 activity. Preclinical studies with both HIV and SIV suggest that the drug has potential to reduce virus reservoirs by activating virus from latency and enhancing effector function. We conducted a phase 1 study of N-803 ( NCT02191098 ) in people living with HIV, the primary objective of which was to assess the safety and tolerability of the drug, with an exploratory objective of assessing the impact on peripheral virus reservoirs. ART-suppressed individuals were enrolled into a dose-escalation study of N-803 in four different cohorts (0.3, 1.0, 3.0 and 6.0 mcg kg-1). Each cohort received three doses total, separated by at least 1 week. We enrolled 16 individuals, of whom 11 completed all three doses. The maximum tolerated dose was 6.0 mcg kg-1. The primary clinical adverse events (AEs) reported were injection site rash and adenopathy, and four participants experienced a grade 1 or grade 2 QTc prolongation. No significant laboratory AEs attributable to N-803 were observed. In exploratory analyses, N-803 was associated with proliferation and/or activation of CD4+ and CD8+ T cells and natural killer cells that peaked at 4 d after dosing. IFN-γ, IP-10, MCP-1 and IL-15 increased during treatment. HIV transcription in memory CD4 T cells and intact proviral DNA initially increased after N-803 treatment; however, there was a small but significant decrease in the frequency of peripheral blood mononuclear cells with an inducible HIV provirus that persisted for up to 6 months after therapy. These data suggest that N-803 administration in ART-suppressed people living with HIV is safe and that larger clinical trials are needed to further investigate the effects of N-803 on HIV reservoirs.
Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Interleucina-15/genética , Leucócitos Mononucleares , Proteínas Recombinantes de Fusão , Carga ViralRESUMO
Metastatic castration-resistant prostate cancer (mCRPC) has been largely resistant to immunotherapy. Natural killer (NK) cells are cytotoxic lymphocytes that detect and kill transformed cells without prior sensitization, and their infiltration into prostate tumors corresponds with an increased overall survival among patients with mCRPC. We sought to harness this knowledge to develop an approach to NK-cell based immunotherapy for mCRPC. We engineered an NK cell line (NK-92MI) to express CD64, the sole human high-affinity IgG Fcγ receptor (FcγR1), and bound these cells with antibodies to provide interchangeable tumor-targeting elements. NK-92MICD64 cells were evaluated for cell-activation mechanisms and antibody-dependent cell-mediated cytotoxicity (ADCC). A combination of mAbs was used to target the prostate tumor antigen tumor-associated calcium signal transducer 2 (TROP2) and the cancer-associated fibroblast marker fibroblast activation protein alpha (FAP). We found that CD64, which is normally expressed by myeloid cells and associates with the adaptor molecule FcRγ, can be expressed by NK-92MI cells and mediate ADCC through an association with CD3ζ. Cytotoxicity from the combination approach was two-fold higher compared to treatment with NK-92MICD64 cells and either mAb alone, and seven-fold higher than NK-92MICD64 cells alone at an effector-target cell ratio of 20:1. The cytotoxic effect was lost when using isotype control antibodies, indicating a selective targeting mechanism. The combination approach demonstrated efficacy in vivo as well and significantly reduced tumor growth compared with the saline control. This combination therapy presents a potential approach for treating mCRPC and could improve immunotherapy response.
Assuntos
Anticorpos Monoclonais/metabolismo , Células Matadoras Naturais/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores de IgG/metabolismo , Engenharia Tecidual/métodos , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/mortalidade , Análise de SobrevidaRESUMO
Vaccines and mAbs offer promising strategies to treat substance use disorders (SUDs) and prevent overdose. Despite vaccines and mAbs against SUDs demonstrating proof of efficacy, selectivity, and safety in animal models, it is unknown whether the mechanism of action of these immunotherapeutics relies exclusively on the formation of Ab/drug complexes, or also involves Ab-mediated effector functions. Hence, this study tested whether the efficacy of active and passive immunization against drugs of abuse requires phagocytosis, the intact Fc portion of the anti-drug Ab, FcγRs, or the neonatal FcR (FcRn). The efficacy of a lead vaccine against oxycodone was not diminished in mice after depletion of macrophages or granulocytes. Anti-oxycodone F(ab')2 fragments resulted in lower serum levels of F(ab')2 compared with intact mAbs, and F(ab')2s were not as effective as the parent mAbs in reducing distribution of oxycodone to the brain. The efficacy of vaccines and mAbs against oxycodone was preserved in either FcγIII or FcγI-IV ablated mice, suggesting that FcγRs are not required for Ab efficacy. Finally, both active and passive immunization against oxycodone in FcRn-/- mice yielded reduced efficacy compared with wild-type control mice. These data identified a role for FcRn, but not for phagocytosis or Fc-dependent effector functions, in mediating the efficacy of vaccines and mAbs against SUD. This study supports rational design of vaccines and mAbs engineered for maximal neutralization activity and optimal FcRn binding.
Assuntos
Transtornos Relacionados ao Uso de Opioides , Vacinas , Animais , Anticorpos Monoclonais , Camundongos , OxicodonaRESUMO
The magnitude of SARS-CoV-2-specific T cell responses correlates inversely with human disease severity, suggesting T cell involvement in primary control. Whereas many COVID-19 vaccines focus on establishing humoral immunity to viral spike protein, vaccine-elicited T cell immunity may bolster durable protection or cross-reactivity with viral variants. To better enable mechanistic and vaccination studies in mice, we identified a dominant CD8 T cell SARS-CoV-2 nucleoprotein epitope. Infection of human ACE2 transgenic mice with SARS-CoV-2 elicited robust responses to H2-Db/N219-227, and 40% of HLA-A*02+ COVID-19 PBMC samples isolated from hospitalized patients responded to this peptide in culture. In mice, i.m. prime-boost nucleoprotein vaccination with heterologous vectors favored systemic CD8 T cell responses, whereas intranasal boosting favored respiratory immunity. In contrast, a single i.v. immunization with recombinant adenovirus established robust CD8 T cell memory both systemically and in the respiratory mucosa.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Vacinação/métodos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/virologia , Células Cultivadas , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Modelos Animais de Doenças , Feminino , Vetores Genéticos/imunologia , Antígeno HLA-A2/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
BACKGROUND: Chronic active Epstein-Barr virus (CAEBV) presents with high levels of viral genomes in blood and tissue infiltration with Epstein-Barr virus (EBV)-positive lymphocytes. The pathogenesis of CAEBV is poorly understood. METHODS: We evaluated 2 patients with natural killer (NK) cell CAEBV and studied their NK cell phenotype and signaling pathways in cells. RESULTS: Both patients had increased numbers of NK cells, EBV predominantly in NK cells, and immature NK cells in the blood. Both patients had increased phosphorylation of Akt, S6, and STAT1 in NK cells, and increased total STAT1. Treatment of 1 patient with sirolimus reduced phosphorylation of S6 in T and B cells, but not in NK cells and did not reduce levels of NK cells or EBV DNA in the blood. Treatment of both patients' cells with JAK inhibitors in vitro reduced phosphorylated STAT1 to normal. Patients with T- or B-cell CAEBV had increased phosphorylation of Akt and S6 in NK cells, but no increase in total STAT1. CONCLUSIONS: The increase in phosphorylated Akt, S6, and STAT1, as well as immature NK cells describe a new phenotype for NK cell CAEBV. The reduction of STAT1 phosphorylation in their NK cells with JAK inhibitors suggests a novel approach to therapy.
Assuntos
Infecções por Vírus Epstein-Barr/diagnóstico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Transtornos Linfoproliferativos/diagnóstico , Transdução de Sinais , Adolescente , Adulto , Linfócitos B/imunologia , Linfócitos B/virologia , Doença Crônica , Infecções por Vírus Epstein-Barr/virologia , Feminino , Humanos , Células Matadoras Naturais/virologia , Transtornos Linfoproliferativos/virologia , Masculino , Fosforilação , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos T/imunologia , Linfócitos T/virologiaRESUMO
Chimeric antigen receptor (CAR)-T cells show great promise in treating cancers and viral infections. However, most protocols developed to expand T cells require relatively long periods of time in culture, potentially leading to progression toward populations of terminally differentiated effector memory cells. Here, we describe in detail a 9-day protocol for CAR gene transduction and expansion of primary rhesus macaque peripheral blood mononuclear cells (PBMCs). Cells produced and expanded with this method show high levels of viability, high levels of co-expression of two transduced genes, retention of the central memory phenotype, and sufficient quantity for immunotherapeutic infusion of 1-2 × 108 cells/kg in a 10 kg rhesus macaque. This 9-day protocol may be broadly used for CAR-T cell and other T cell immunotherapy approaches to decrease culture time and increase maintenance of central memory populations.
RESUMO
Natural killer (NK) cells are important innate effector cells that are well described in their ability to kill virally-infected cells and tumors. However, there is increasing appreciation for the role of NK cells in the control of other pathogens, including intracellular parasites such as Plasmodium, the cause of malaria. NK cells may be beneficial during the early phase of Plasmodium infection-prior to the activation and expansion of antigen-specific T cells-through cooperation with myeloid cells to produce inflammatory cytokines like IFNγ. Recent work has defined how Plasmodium can activate NK cells to respond with natural cytotoxicity, and inhibit the growth of parasites via antibody-dependent cellular cytotoxicity mechanisms (ADCC). A specialized subset of adaptive NK cells that are negative for the Fc receptor γ chain have enhanced ADCC function and correlate with protection from malaria. Additionally, production of the regulatory cytokine IL-10 by NK cells prevents overt pathology and death during experimental cerebral malaria. Now that conditional NK cell mouse models have been developed, previous studies need to be reevaluated in the context of what is now known about other immune populations with similarity to NK cells (i.e., NKT cells and type I innate lymphoid cells). This brief review summarizes recent findings which support the potentially beneficial roles of NK cells during Plasmodium infection in mice and humans. Also highlighted are how the actions of NK cells can be explored using new experimental strategies, and the potential to harness NK cell function in vaccination regimens.
Assuntos
Imunidade Inata , Células Matadoras Naturais/imunologia , Plasmodium/fisiologia , Animais , Humanos , Células Matadoras Naturais/parasitologia , CamundongosRESUMO
Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment, upregulation of T helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses, and p53 activation associated with control of malarial fever and coordinated with Pf-specific immunoglobulin G (IgG) and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.
Assuntos
Linfócitos B/imunologia , Proteínas Sanguíneas/metabolismo , Inflamação/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/fisiologia , Células Th1/imunologia , Células Th2/imunologia , Proteína Supressora de Tumor p53/metabolismo , Adolescente , Adulto , Animais , Anticorpos Antiprotozoários/metabolismo , Criança , Pré-Escolar , Resistência à Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Receptores Fc/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Adulto JovemRESUMO
How antibodies naturally acquired during Plasmodium falciparum infection provide clinical immunity to blood-stage malaria is unclear. We studied the function of natural killer (NK) cells in people living in a malaria-endemic region of Mali. Multi-parameter flow cytometry revealed a high proportion of adaptive NK cells, which are defined by the loss of transcription factor PLZF and Fc receptor γ-chain. Adaptive NK cells dominated antibody-dependent cellular cytotoxicity responses, and their frequency within total NK cells correlated with lower parasitemia and resistance to malaria. P. falciparum-infected RBCs induced NK cell degranulation after addition of plasma from malaria-resistant individuals. Malaria-susceptible subjects with the largest increase in PLZF-negative NK cells during the transmission season had improved odds of resistance during the subsequent season. Thus, antibody-dependent lysis of P. falciparum-infected RBCs by NK cells may be a mechanism of acquired immunity to malaria. Consideration of antibody-dependent NK cell responses to P. falciparum antigens is therefore warranted in the design of malaria vaccines.
Assuntos
Células Matadoras Naturais/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/fisiologia , Adolescente , Anticorpos Antiprotozoários/imunologia , Antígeno CD56/metabolismo , Criança , Pré-Escolar , Eritrócitos/parasitologia , Humanos , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Receptores de IgG/metabolismo , Adulto JovemRESUMO
Antibodies acquired naturally through repeated exposure to Plasmodium falciparum are essential in the control of blood-stage malaria. Antibody-dependent functions may include neutralization of parasite-host interactions, complement activation, and activation of Fc receptor functions. A role of antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in protection from malaria has not been established. Here we show that IgG isolated from adults living in a malaria-endemic region activated ADCC by primary human NK cells, which lysed infected red blood cells (RBCs) and inhibited parasite growth in an in vitro assay for ADCC-dependent growth inhibition. RBC lysis by NK cells was highly selective for infected RBCs in a mixed culture with uninfected RBCs. Human antibodies to P. falciparum antigens PfEMP1 and RIFIN were sufficient to promote NK-dependent growth inhibition. As these results implicate acquired immunity through NK-mediated ADCC, antibody-based vaccines that target bloodstream parasites should consider this new mechanism of action.
Assuntos
Anticorpos Antiprotozoários/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Imunoglobulina G/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Malária Falciparum/imunologia , Plasmodium falciparum/efeitos dos fármacos , Anticorpos Antiprotozoários/isolamento & purificação , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Técnicas de Cocultura , Eritrócitos/parasitologia , Hemólise , Humanos , Soros Imunes/química , Imunidade Celular/efeitos dos fármacos , Imunoglobulina G/isolamento & purificação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/parasitologia , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Imagem com Lapso de TempoRESUMO
Cerebral malaria is a deadly complication of Plasmodium infection and involves blood brain barrier (BBB) disruption following infiltration of white blood cells. During experimental cerebral malaria (ECM), mice inoculated with Plasmodium berghei ANKA-infected red blood cells develop a fatal CM-like disease caused by CD8+ T cell-mediated pathology. We found that treatment with interleukin-15 complex (IL-15C) prevented ECM, whereas IL-2C treatment had no effect. IL-15C-expanded natural killer (NK) cells were necessary and sufficient for protection against ECM. IL-15C treatment also decreased CD8+ T cell activation in the brain and prevented BBB breakdown without influencing parasite load. IL-15C induced NK cells to express IL-10, which was required for IL-15C-mediated protection against ECM. Finally, we show that ALT-803, a modified human IL-15C, mediates similar induction of IL-10 in NK cells and protection against ECM. These data identify a regulatory role for cytokine-stimulated NK cells in the prevention of a pathogenic immune response.
Assuntos
Interleucina-10/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Proteínas/farmacologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/imunologia , Interleucina-10/biossíntese , Ativação Linfocitária/imunologia , Malária Cerebral/microbiologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes de FusãoRESUMO
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature.
Assuntos
Vasos Sanguíneos/patologia , Barreira Hematoencefálica/patologia , Tronco Encefálico/patologia , Linfócitos T CD8-Positivos/patologia , Malária Cerebral/patologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Imuno-Histoquímica , Malária Cerebral/imunologia , Camundongos , Camundongos Transgênicos , Plasmodium bergheiRESUMO
Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses. In this article, we report on the regulation of B cells expressing the inherently autoreactive VH4-34 H chain (identified by the 9G4 mAb) and 9G4+ plasma IgG in adults and children living in a P. falciparum malaria-endemic area in West Africa. The frequency of 9G4+ peripheral blood CD19+ B cells was similar in United States adults and African adults and children; however, more 9G4+ B cells appeared in classical and atypical memory B cell compartments in African children and adults compared with United States adults. The levels of 9G4+ IgG increased following acute febrile malaria but did not increase with age as humoral immunity is acquired or correlate with protection from acute disease. This was the case, even though a portion of 9G4+ B cells acquired phenotypes of atypical and classical memory B cells and 9G4+ IgG contained equivalent numbers of somatic hypermutations compared with all other VHs, a characteristic of secondary Ab repertoire diversification in response to Ag stimulation. Determining the origin and function of 9G4+ B cells and 9G4+ IgG in malaria may contribute to a better understanding of the varied roles of autoreactivity in infectious diseases.