Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(16): e2208772, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681859

RESUMO

With the demand for renewable energy and efficient devices rapidly increasing, a need arises to find and optimize novel (nano)materials. With sheer limitless possibilities for material combinations and synthetic procedures, obtaining novel, highly functional materials has been a tedious trial and error process. Recently, machine learning has emerged as a powerful tool to help optimize syntheses; however, most approaches require a substantial amount of input data, limiting their pertinence. Here, three well-known machine-learning models are merged with Bayesian optimization into one to optimize the synthesis of CsPbBr3 nanoplatelets with limited data demand. The algorithm can accurately predict the photoluminescence emission maxima of nanoplatelet dispersions using only the three precursor ratios as input parameters. This allows us to fabricate previously unobtainable seven and eight monolayer-thick nanoplatelets. Moreover, the algorithm dramatically improves the homogeneity of 2-6-monolayer-thick nanoplatelet dispersions, as evidenced by narrower and more symmetric photoluminescence spectra. Decisively, only 200 total syntheses are required to achieve this vast improvement, highlighting how rapidly material properties can be optimized. The algorithm is highly versatile and can incorporate additional synthetic parameters. Accordingly, it is readily applicable to other less-explored nanocrystal syntheses and can help rapidly identify and improve exciting compositions' quality.

2.
J Phys Chem Lett ; 13(8): 1940-1951, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35188778

RESUMO

Novel optoelectronic materials have the potential to revolutionize the ongoing green transition by both providing more efficient photovoltaic (PV) devices and lowering energy consumption of devices like LEDs and sensors. The lead candidate materials for these applications are both organic semiconductors and more recently perovskites. This Perspective illustrates how novel machine learning techniques can help explore these materials, from speeding up ab initio calculations toward experimental guidance. Furthermore, based on existing work, perspectives around machine-learned molecular dynamics potentials, physically informed neural networks, and generative methods are outlined.

3.
ACS Biomater Sci Eng ; 7(9): 4614-4625, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34415142

RESUMO

Similar to how CRISPR has revolutionized the field of molecular biology, machine learning may drastically boost research in the area of materials science. Machine learning is a fast-evolving method that allows for analyzing big data and unveiling correlations that otherwise would remain undiscovered. It may hold invaluable potential to engineer novel functional materials with desired properties, a field, which is currently limited by time-consuming trial and error approaches and our limited understanding of how different material properties depend on each other. Here, we apply machine learning algorithms to classify complex biological materials based on their microtopography. With this approach, the surfaces of different variants of biofilms and plant leaves can not only be distinguished but also correctly classified according to their wettability. Furthermore, an importance ranking provided by one of the algorithms allows us to identify those surface features that are critical for a successful sample classification. Our study exemplifies how machine learning can contribute to the analysis and categorization of complex surfaces, a tool, which can be highly useful for other areas of materials science, such as damage assessment as well as adhesion or friction studies.


Assuntos
Algoritmos , Aprendizado de Máquina , Big Data , Biologia Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA