Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Lancet Child Adolesc Health ; 8(4): 259-269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373429

RESUMO

BACKGROUND: Touch interventions such as massage and skin-to-skin contact relieve neonatal pain. The Parental touch trial (Petal) aimed to assess whether parental stroking of their baby before a clinically required heel lance, at a speed of approximately 3 cm/s to optimally activate C-tactile nerve fibres, provides effective pain relief. METHODS: Petal is a multicentre, randomised, parallel-group interventional superiority trial conducted in the John Radcliffe Hospital (Oxford University Hospitals NHS Foundation Trust, Oxford, UK) and the Royal Devon and Exeter Hospital (Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK). Neonates without neurological abnormalities who were born at 35 weeks gestational age or more and required a blood test via a heel lance in the first week of life were randomly assigned (1:1) to receive parental touch for 10 s either before (intervention group) or after (control group) the clinically required heel lance. Randomisation was managed at the Oxford site using a web-based minimisation algorithm with allocation concealment. The primary outcome measure was the magnitude of noxious-evoked brain activity in response to the heel lance measured with electroencephalography (EEG). Secondary outcome measures were Premature Infant Pain Profile-Revised (PIPP-R) score, development of tachycardia, and parental anxiety score. For all outcomes, the per-protocol effect was estimated via complier average causal effect analysis on the full analysis set. The trial is registered on ISRCTN (ISRCTN14135962) and ClinicalTrials.gov (NCT04901611). FINDINGS: Between Sept 1, 2021, and Feb 7, 2023, 159 parents were approached to participate in the study, and 112 neonates were included. 56 neonates were randomly assigned to the intervention group of parental stroking before the heel lance and 56 to the control group of parental stroking after the heel lance. The mean of the magnitude of the heel lance-evoked brain activity was 0·85 arbitrary units (a.u.; SD 0·70; n=39; a scaled magnitude of 1 a.u. represents the expected mean response to a heel lance in term-aged neonates) in the intervention group and 0·91 a.u. (SD 0·76; n=43) in the control group. Therefore, the primary outcome did not differ significantly between groups, with a mean difference of -0·11 a.u. (lower in intervention group; SD 0·77; 95% CI -0·42 to 0·20; p=0·38; n=82). No significant difference was observed across secondary outcomes. The PIPP-R difference in means was 1·10 (higher in intervention group, 95% CI -0·42 to 2·61; p=0·15; n=100); the odds ratio of becoming tachycardic was 2·08 (95% CI 0·46 to 9·46; p=0·34, n=105) in the intervention group with reference to the control group; and the difference in parental State-Trait Anxiety Inventory-State score was -0·44 (higher in control group; SD 6·85; 95% CI -2·91 to 2·02; p=0·72; n=106). One serious adverse event (desaturation) occurred in a neonate randomly assigned to the control group, which was not considered to be related to the study. INTERPRETATION: Parental stroking delivered at an optimal speed to activate C-tactile fibres for a duration of 10 s before the painful procedure did not significantly change neonates' magnitude of pain-related brain activity, PIPP-R score, or development of tachycardia. The trial highlighted the challenge of translating an experimental researcher-led tactile intervention into a parent-led approach, and the value of involving parents in their baby's pain management. FUNDING: Wellcome Trust and Bliss.


Assuntos
Dor Processual , Humanos , Recém-Nascido , Dor , Taquicardia , Tato , Reino Unido
2.
Pain ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38284396

RESUMO

ABSTRACT: Parental involvement in neonatal comfort care is a core component of family-centred care. Yet, parents experience a range of positive and negative feelings when providing pain-relieving interventions for their infants. Parents of infants who participated in the Parental touch trial (Petal), a multicentre randomised controlled trial investigating the impact of gentle parental touch on neonatal pain, were asked to complete an anonymous survey. This survey aimed to (1) explore parent-reported motivations in deciding to participate in the Petal trial; (2) understand parent-reported experiences related to trial participation; (3) understand parents' willingness to participate in future studies; and (4) evaluate parent-reported feelings while they were delivering a gentle touch intervention either before or after a clinically necessary blood test. One hundred six parents (1 parent per infant) took part in the survey. Primary motivators for participation were altruistic. Parents most frequently reported that they wanted their child to take part in the research because it has a potential benefit to babies in the future and because they wanted to improve scientific understanding. Parents reported that providing gentle touch to their children during painful procedures was associated with positive emotions, such as feeling "useful" (64%) and "reassured" (53%). Furthermore, nearly all parents (98%) were pleased to have participated in the Petal trial and would consider, or maybe consider, participating in further research studies. These results underscore the importance of structuring trials around parental involvement and providing opportunities for parents to be involved in providing comfort to their infants during necessary painful clinical procedures.

3.
Clin Neurophysiol ; 157: 61-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064929

RESUMO

OBJECTIVE: We investigated whether sensory-evoked cortical potentials could be used to estimate the age of an infant. Such a model could be used to identify infants who deviate from normal neurodevelopment. METHODS: Infants aged between 28- and 40-weeks post-menstrual age (PMA) (166 recording sessions in 96 infants) received trains of visual and tactile stimuli. Neurodynamic response functions for each stimulus were derived using principal component analysis and a machine learning model trained and validated to predict infant age. RESULTS: PMA could be predicted accurately from the magnitude of the evoked responses (training set mean absolute error and 95% confidence intervals: 1.41 [1.14; 1.74] weeks,p = 0.0001; test set mean absolute error: 1.55 [1.21; 1.95] weeks,p = 0.0002). Moreover, we show that their predicted age (their brain age) is correlated with a measure known to relate to maturity of the nervous system and is linked to long-term neurodevelopment. CONCLUSIONS: Sensory-evoked potentials are predictive of age in premature infants and brain age deviations are related to biologically and clinically meaningful individual differences in nervous system maturation. SIGNIFICANCE: This model could be used to detect abnormal development of infants' response to sensory stimuli in their environment and may be predictive of neurodevelopmental outcome.


Assuntos
Potenciais Evocados , Recém-Nascido Prematuro , Recém-Nascido , Lactente , Humanos , Recém-Nascido Prematuro/fisiologia , Encéfalo
4.
Clin Neurophysiol Pract ; 8: 203-225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125677

RESUMO

Objective: We conducted a systematic review to investigate electroencephalography (EEG) changes during periods of acute respiratory events such as apnoea and the effect of respiratory stimulants on EEG features in infants. Methods: Studies examining respiration and EEG-recorded brain activity in human neonates between 28 and 42 weeks postmenstrual age were included. Two reviewers independently screened all records and included studies were assessed using the Joanna Briggs Institute Critical Appraisal Tool. The protocol was registered in PROSPERO (CRD42022339873). Results: We identified 14 studies with a total of 534 infants. Nine articles assessed EEG changes in relation to apnoea, one assessed hiccups, and four investigated the effect of respiratory stimulants. The relationship between neonatal apnoea and EEG changes was inconsistent; EEG suppression and decreased amplitude and frequency were observed during some, but not all, apnoeas. Respiratory stimulants increased EEG continuity compared with before use. Conclusions: Current studies in this area are constrained by small sample sizes. Diverse exposure definitions and outcome measures impact inference. Significance: This review highlights the need for further work; understanding the relationship between respiration and the developing brain is key to mitigating the long-term effects of apnoea.

6.
PLoS One ; 18(7): e0288488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440586

RESUMO

Recording multimodal responses to sensory stimuli in infants provides an integrative approach to investigate the developing nervous system. Accurate time-locking across modalities is essential to ensure that responses are interpreted correctly, and could also improve clinical care, for example, by facilitating automatic and objective multimodal pain assessment. Here we develop and assess a system to time-lock stimuli (including clinically-required heel lances and experimental visual, auditory and tactile stimuli) to electrophysiological research recordings and data recorded directly from a hospitalised infant's vital signs monitor. The electronic device presented here (that we have called 'the PiNe box') integrates a previously developed system to time-lock stimuli to electrophysiological recordings and can simultaneously time-lock the stimuli to recordings from hospital vital signs monitors with an average precision of 105 ms (standard deviation: 19 ms), which is sufficient for the analysis of changes in vital signs. Our method permits reliable and precise synchronisation of data recordings from equipment with legacy ports such as TTL (transistor-transistor logic) and RS-232, and patient-connected networkable devices, is easy to implement, flexible and inexpensive. Unlike current all-in-one systems, it enables existing hospital equipment to be easily used and could be used for patients of any age. We demonstrate the utility of the system in infants using visual and noxious (clinically-required heel lance) stimuli as representative examples.


Assuntos
Monitorização Fisiológica , Tato , Humanos , Lactente , Criança Hospitalizada , Sinais Vitais , Monitorização Fisiológica/instrumentação
7.
Pediatr Res ; 94(2): 699-706, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36788288

RESUMO

BACKGROUND: Early risk stratification for developing retinopathy of prematurity (ROP) is essential for tailoring screening strategies and preventing abnormal retinal development. This study aims to examine the ability of physiological data during the first postnatal month to distinguish preterm infants with and without ROP requiring laser treatment. METHODS: In this cohort study, preterm infants with a gestational age <32 weeks and/or birth weight <1500 g, who were screened for ROP were included. Differences in the physiological data between the laser and non-laser group were identified, and tree-based classification models were trained and independently tested to predict ROP requiring laser treatment. RESULTS: In total, 208 preterm infants were included in the analysis of whom 30 infants (14%) required laser treatment. Significant differences were identified in the level of hypoxia and hyperoxia, oxygen requirement, and skewness of heart rate. The best model had a balanced accuracy of 0.81 (0.72-0.87), a sensitivity of 0.73 (0.64-0.81), and a specificity of 0.88 (0.80-0.93) and included the SpO2/FiO2 ratio and baseline demographics (including gestational age and birth weight). CONCLUSIONS: Routinely monitored physiological data from preterm infants in the first postnatal month are already predictive of later development of ROP requiring laser treatment, although validation is required in larger cohorts. IMPACT: Routinely monitored physiological data from the first postnatal month are predictive of later development of ROP requiring laser treatment, although model performance was not significantly better than baseline characteristics (gestational age, birth weight, sex, multiple birth, prenatal glucocorticosteroids, route of delivery, and Apgar scores) alone. A balanced accuracy of 0.81 (0.72-0.87), a sensitivity of 0.73 (0.64-0.81), and a specificity of 0.88 (0.80-0.93) was achieved with a model including the SpO2/FiO2 ratio and baseline characteristics. Physiological data have potential to play a significant role for future ROP prediction and provide opportunities for early interventions to protect infants from abnormal retinal development.


Assuntos
Recém-Nascido Prematuro , Retinopatia da Prematuridade , Lactente , Feminino , Gravidez , Recém-Nascido , Humanos , Peso ao Nascer , Retinopatia da Prematuridade/diagnóstico , Retinopatia da Prematuridade/cirurgia , Estudos de Coortes , Fatores de Risco , Idade Gestacional , Estudos Retrospectivos , Recém-Nascido de muito Baixo Peso
8.
BMJ Open ; 12(7): e061841, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-36250332

RESUMO

INTRODUCTION: Newborn infants routinely undergo minor painful procedures as part of postnatal care, with infants born sick or premature requiring a greater number of procedures. As pain in early life can have long-term neurodevelopmental consequences and lead to parental anxiety and future avoidance of interventions, effective pain management is essential. Non-pharmacological comfort measures such as breastfeeding, swaddling and sweet solutions are inconsistently implemented and are not always practical or effective in reducing the transmission of noxious input to the brain. Stroking of the skin can activate C-tactile fibres and reduce pain, and therefore could provide a simple and safe parent-led intervention for the management of pain. The trial aim is to determine whether parental touch prior to a painful clinical procedure provides effective pain relief in neonates. METHODS AND ANALYSIS: This is a multicentre randomised controlled trial. A total of 112 neonates born at 35 weeks' gestation or more requiring a blood test in the first week of life will be recruited and randomised to receive parental stroking either preprocedure or postprocedure. We will record brain activity (EEG), cardiac and respiratory dynamics, oxygen saturation and facial expression to provide proxy pain outcome measures. The primary outcome will be the reduction of noxious-evoked brain activity in response to a heel lance. Secondary outcomes will be a reduction in clinical pain scores (Premature Infant Pain Profile-Revised), postprocedural tachycardia and parental anxiety. ETHICS AND DISSEMINATION: The study has been approved by the London-South East Research Ethics Committee (ref: 21/LO/0523). The results will be widely disseminated through peer-reviewed publications, international conferences and via our partner neonatal charities Bliss and Supporting the Sick Newborn And their Parents (SSNAP). If the parental tactile intervention is effective, recommendations will be submitted via the National Health Service clinical guideline adoption process. STUDY STATUS: Commenced September 2021. TRIAL REGISTRATION NUMBER: NCT04901611; 14 135 962.


Assuntos
Dor Processual , Feminino , Humanos , Lactente , Recém-Nascido , Dor/prevenção & controle , Dor Processual/prevenção & controle , Pais , Medicina Estatal , Tato
9.
Nat Commun ; 13(1): 3943, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803920

RESUMO

Immune function and sensitivity to pain are closely related, but the association between early life inflammation and sensory nervous system development is poorly understood-especially in humans. Here, in term-born infants, we measure brain activity and reflex withdrawal activity (using EEG and EMG) and behavioural and physiological activity (using the PIPP-R score) to assess the impact of suspected early-onset neonatal infection on tactile- and noxious-evoked responses. We present evidence that neonatal inflammation (assessed by measuring C-reactive protein levels) is associated with increased spinal cord excitability and evoked brain activity following both tactile and noxious stimulation. There are early indications that this hyperalgesia could be maintained post-inflammation, supporting pre-clinical reports of early-life immune dysfunction influencing pain sensitivity in adults.


Assuntos
Nociceptividade , Medula Espinal , Humanos , Hiperalgesia , Recém-Nascido , Inflamação , Dor , Medula Espinal/fisiologia
10.
Cereb Cortex ; 32(17): 3799-3815, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34958675

RESUMO

Pain assessment in preterm infants is challenging as behavioral, autonomic, and neurophysiological measures of pain are reported to be less sensitive and specific than in term infants. Understanding the pattern of preterm infants' noxious-evoked responses is vital to improve pain assessment in this group. This study investigated the discriminability and development of multimodal noxious-evoked responses in infants aged 28-40 weeks postmenstrual age. A classifier was trained to discriminate responses to a noxious heel lance from a nonnoxious control in 47 infants, using measures of facial expression, brain activity, heart rate, and limb withdrawal, and tested in two independent cohorts with a total of 97 infants. The model discriminates responses to the noxious from the nonnoxious procedure with an overall accuracy of 0.76-0.84 and an accuracy of 0.78-0.79 in the 28-31-week group. Noxious-evoked responses have distinct developmental patterns. Heart rate responses increase in magnitude with age, while noxious-evoked brain activity undergoes three distinct developmental stages, including a previously unreported transitory stage consisting of a negative event-related potential between 30 and 33 weeks postmenstrual age. These findings demonstrate that while noxious-evoked responses change across early development, infant responses to noxious and nonnoxious stimuli are discriminable in prematurity.


Assuntos
Encéfalo , Recém-Nascido Prematuro , Encéfalo/fisiologia , Criança , Potenciais Evocados , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Dor , Medição da Dor
11.
BMJ Open Respir Res ; 8(1)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34893521

RESUMO

BACKGROUND: Respiratory disorders, including apnoea, are common in preterm infants due to their immature respiratory control compared with term-born infants. However, our inability to accurately measure respiratory rate in hospitalised infants results in unreported episodes of apnoea and an incomplete picture of respiratory activity. METHODS: We develop, validate and use a novel algorithm to identify interbreath intervals (IBIs) and apnoeas in preterm infants. In 42 preterm infants (1600 hours of recordings), we assess IBIs from the chest electrical impedance pneumograph using an adaptive amplitude threshold for the detection of breaths. The algorithm is refined by comparing its accuracy with clinically observed breaths and pauses in breathing. We develop an automated classifier to differentiate periods of true apnoea from artefactually low amplitude signal. We assess the performance of this algorithm in the detection of morphine-induced respiratory depression. Finally, we use the algorithm to investigate whether retinopathy of prematurity (ROP) screening alters the IBI distribution. RESULTS: Individual breaths were detected with a false-positive rate of 13% and a false-negative rate of 12%. The classifier identified true apnoeas with an accuracy of 93%. As expected, morphine caused a significant shift in the IBI distribution towards longer IBIs. Following ROP screening, there was a significant increase in pauses in breathing that lasted more than 10 s (t-statistic=1.82, p=0.023). This was not reflected by changes in the monitor-derived respiratory rate and no episodes of apnoea were recorded in the medical records. CONCLUSIONS: We show that our algorithm offers an improved method for the identification of IBIs and apnoeas in preterm infants. Following ROP screening, increased respiratory instability can occur even in the absence of clinically significant apnoeas. Accurate assessment of infant respiratory activity is essential to inform clinical practice.


Assuntos
Apneia , Recém-Nascido Prematuro , Apneia/diagnóstico , Humanos , Lactente , Recém-Nascido , Respiração
12.
Front Pediatr ; 9: 755677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760852

RESUMO

Infants who are born prematurely are at significant risk of apnoea. In addition to the short-term consequences such as hypoxia, apnoea of prematurity has been associated with long-term morbidity, including poor neurodevelopmental outcomes. Clinical trials have illustrated the importance of methylxanthine drugs, in particular caffeine, in reducing the risk of long term adverse neurodevelopmental outcomes. However, the extent to which apnoea is causative of this secondary neurodevelopmental delay or is just associated in a background of other sequelae of prematurity remains unclear. In this review, we first discuss the pathophysiology of apnoea of prematurity, previous studies investigating the relationship between apnoea and neurodevelopmental delay, and treatment of apnoea with caffeine therapy. We propose a need for better methods of measuring apnoea, along with improved understanding of the neonatal brain's response to consequent hypoxia. Only then can we start to disentangle the effects of apnoea on neurodevelopment in preterm infants. Moreover, by better identifying those infants who are at risk of apnoea, and neurodevelopmental delay, we can work toward a risk stratification system for these infants that is clinically actionable, for example, with doses of caffeine tailored to the individual. Optimising treatment of apnoea for individual infants will improve neonatal care and long-term outcomes for this population.

14.
Elife ; 102021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33847561

RESUMO

Despite the high burden of pain experienced by hospitalised neonates, there are few analgesics with proven efficacy. Testing analgesics in neonates is experimentally and ethically challenging and minimising the number of neonates required to demonstrate efficacy is essential. EEG (electroencephalography)-derived measures of noxious-evoked brain activity can be used to assess analgesic efficacy; however, as variability exists in neonate's responses to painful procedures, large sample sizes are often required. Here, we present an experimental paradigm to account for individual differences in noxious-evoked baseline sensitivity which can be used to improve the design of analgesic trials in neonates. The paradigm is developed and tested across four observational studies using clinical, experimental, and simulated data (92 neonates). We provide evidence of the efficacy of gentle brushing and paracetamol, substantiating the need for randomised controlled trials of these interventions. This work provides an important step towards safe, cost-effective clinical trials of analgesics in neonates.


Hospitalized newborns often undergo medical procedures, like blood tests, without pain relief. This can cause the baby to experience short-term distress that may have negative consequences later in life. However, testing the effects of pain relief in newborns is challenging because, unlike adults, they cannot report how much pain they are experiencing. One way to overcome this is to record the brain activity of newborns during a painful procedure and to see how these signals are modified following pain relief. Randomized controlled trials are the gold standard for these kinds of medical assessments, but require a high number of participants to account for individual differences in how babies respond to pain. Finding ways to reduce the size of pain control studies could lead to faster development of pain relief methods. Here, Cobo, Hartley et al. demonstrate a way to reduce the number of newborns needed to test potential pain-relieving interventions. In the experiments, the brain activity of nine babies was measured after a gentle poke and after a painful clinically required procedure. Cobo, Hartley et al. found that the babies' response to the gentle poke correlated with their response to pain. Further data analysis revealed that this information can be used to predict the variability in pain experienced by different newborns, reducing the number of participants needed for pain relief trials. Next, Cobo, Hartley et al. used this new approach in two pilot tests. One showed that gently stroking an infant's leg before blood is drawn from their heel reduced their brains' response to pain. The second showed that giving a baby the painkiller paracetamol lessened the brain's response to immunisation. The new approach identified by Cobo, Hartley et al. may enable smaller studies that can more quickly identify ways to reduce pain in babies. Furthermore, this work suggests that gentle brushing and paracetamol could provide pain relief for newborns undergoing hospital acute procedures. However, more formal clinical trials are needed to test the effectiveness of these two strategies.


Assuntos
Encéfalo/efeitos dos fármacos , Eletroencefalografia , Comportamento do Lactente/efeitos dos fármacos , Manejo da Dor , Medição da Dor , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Dor/prevenção & controle , Acetaminofen/uso terapêutico , Fatores Etários , Analgésicos não Narcóticos/uso terapêutico , Coleta de Amostras Sanguíneas/efeitos adversos , Encéfalo/fisiopatologia , Ensaios Clínicos como Assunto , Simulação por Computador , Determinação de Ponto Final , Feminino , Humanos , Recém-Nascido , Masculino , Dor/diagnóstico , Dor/etiologia , Dor/fisiopatologia , Manejo da Dor/efeitos adversos , Valor Preditivo dos Testes , Estudos Prospectivos , Projetos de Pesquisa , Estudos Retrospectivos , Toque Terapêutico , Resultado do Tratamento , Vacinação/efeitos adversos
15.
Paediatr Neonatal Pain ; 3(1): 9-11, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35548849

RESUMO

The extent to which the COVID-19 pandemic will have a negative impact on Early Career Researchers (ECRs) within the field of pediatric pain and in general is still unclear, but it is likely to be far reaching and may disproportionality affect women. Yet, there is also great opportunity to take advantage of the rapid adaptions to working life that we have all undertaken during the pandemic. In particular, continuing to have online options for conference attendance I think will have a positive impact on ECRs, and in particular female ECRs, now and in the future. Moreover, the pediatric pain research community is relatively small and highly international; by enabling wider participation in our conferences we will diversify our research output and expedite our aim of providing better treatment of pediatric pain.

16.
Paediatr Neonatal Pain ; 3(4): 147-155, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35372840

RESUMO

Vital signs, such as heart rate and oxygen saturation, are continuously monitored for infants in neonatal care units. Pharmacological interventions can alter an infant's vital signs, either as an intended effect or as a side effect, and consequently could provide an approach to explore the wide variability in pharmacodynamics across infants and could be used to develop models to predict outcome (efficacy or adverse effects) in an individual infant. This will enable doses to be tailored according to the individual, shifting the balance toward efficacy and away from the adverse effects of a drug. Pharmacological analgesics are frequently not given in part due to the risk of adverse effects, yet this exposes infants to the short- and long-term effects of painful procedures. Personalized analgesic dosing will be an important step forward in providing safer effective pain relief in infants. The aim of this paper was to describe a framework to develop predictive models of drug outcome from analysis of vital signs data, focusing on analgesics as a representative example. This framework investigates changes in vital signs in response to the analgesic (prior to the painful procedure) and proposes using machine learning to examine if these changes are predictive of outcome-either efficacy (with pain response measured using a multimodal approach, as changes in vital signs alone have limited sensitivity and specificity) or adverse effects. The framework could be applied to both preterm and term infants in neonatal care units, as well as older children. Sharing vital signs data are proposed as a means to achieve this aim and bring personalized medicine rapidly to the forefront in neonatology.

18.
ERJ Open Res ; 6(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32154294

RESUMO

The incidence of preterm birth is increasing, leading to a growing population with potential long-term pulmonary complications. Apnoea of prematurity (AOP) is one of the major challenges when treating preterm infants; it can lead to respiratory failure and the need for mechanical ventilation. Ventilating preterm infants can be associated with severe negative pulmonary and extrapulmonary outcomes, such as bronchopulmonary dysplasia (BPD), severe neurological impairment and death. Therefore, international guidelines favour non-invasive respiratory support. Strategies to improve the success rate of non-invasive ventilation in preterm infants include pharmacological treatment of AOP. Among the different pharmacological options, caffeine citrate is the current drug of choice. Caffeine is effective in reducing AOP and mechanical ventilation and enhances extubation success; it decreases the risk of BPD; and is associated with improved cognitive outcome at 2 years of age, and pulmonary function up to 11 years of age. The commonly prescribed dose (20 mg·kg-1 loading dose, 5-10 mg·kg-1 per day maintenance dose) is considered safe and effective. However, to date there is no commonly agreed standardised protocol on the optimal dosing and timing of caffeine therapy. Furthermore, despite the wide pharmacological safety profile of caffeine, the role of therapeutic drug monitoring in caffeine-treated preterm infants is still debated. This state-of-the-art review summarises the current knowledge of caff-eine therapy in preterm infants and highlights some of the unresolved questions of AOP. We speculate that with increased understanding of caffeine and its metabolism, a more refined respiratory management of preterm infants is feasible, leading to an overall improvement in patient outcome.

19.
PLoS One ; 15(1): e0226772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923200

RESUMO

Preterm infant brain activity is discontinuous; bursts of activity recorded using EEG (electroencephalography), thought to be driven by subcortical regions, display scale free properties and exhibit a complex temporal ordering known as long-range temporal correlations (LRTCs). During brain development, activity-dependent mechanisms are essential for synaptic connectivity formation, and abolishing burst activity in animal models leads to weak disorganised synaptic connectivity. Moreover, synaptic pruning shares similar mechanisms to spike-timing dependent plasticity (STDP), suggesting that the timing of activity may play a critical role in connectivity formation. We investigated, in a computational model of leaky integrate-and-fire neurones, whether the temporal ordering of burst activity within an external driving input could modulate connectivity formation in the network. Connectivity evolved across the course of simulations using an approach analogous to STDP, from networks with initial random connectivity. Small-world connectivity and hub neurones emerged in the network structure-characteristic properties of mature brain networks. Notably, driving the network with an external input which exhibited LRTCs in the temporal ordering of burst activity facilitated the emergence of these network properties, increasing the speed with which they emerged compared with when the network was driven by the same input with the bursts randomly ordered in time. Moreover, the emergence of small-world properties was dependent on the strength of the LRTCs. These results suggest that the temporal ordering of burst activity could play an important role in synaptic connectivity formation and the emergence of small-world topology in the developing brain.


Assuntos
Córtex Cerebral/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Córtex Cerebral/citologia , Rede Nervosa/citologia , Neurônios/citologia
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA