Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1149754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969082

RESUMO

Acute Myeloid Leukemia (AML) is a type of cancer of the blood system that is characterized by an accumulation of immature hematopoietic cells in the bone marrow and blood. Its pathogenesis is characterized by an increase in self-renewal and block in differentiation in hematopoietic stem and progenitor cells. Underlying its pathogenesis is the acquisition of mutations in these cells. As there are many different mutations found in AML that can occur in different combinations the disease is very heterogeneous. There has been some progress in the treatment of AML through the introduction of targeted therapies and a broader application of the stem cell transplantation in its treatment. However, many mutations found in AML are still lacking defined interventions. These are in particular mutations and dysregulation in important myeloid transcription factors and epigenetic regulators that also play a crucial role in normal hematopoietic differentiation. While a direct targeting of the partial loss-of-function or change in function observed in these factors is very difficult to imagine, recent data suggests that the inhibition of LSD1, an important epigenetic regulator, can modulate interactions in the network of myeloid transcription factors and restore differentiation in AML. Interestingly, the impact of LSD1 inhibition in this regard is quite different between normal and malignant hematopoiesis. The effect of LSD1 inhibition involves transcription factors that directly interact with LSD1 such as GFI1 and GFI1B, but also transcription factors that bind to enhancers that are modulated by LSD1 such as PU.1 and C/EBPα as well as transcription factors that are regulated downstream of LSD1 such as IRF8. In this review, we are summarizing the current literature on the impact of LSD1 modulation in normal and malignant hematopoietic cells and the current knowledge how the involved transcription factor networks are altered. We are also exploring how these modulation of transcription factors play into the rational selection of combination partners with LSD1 inhibitors, which is an intense area of clinical investigation.

2.
Mol Biol Rep ; 47(6): 4867-4873, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32410138

RESUMO

The multiple physiological effects of the indoleamine melatonin, are mediated primarily by its two G protein-coupled MT1 and MT2 receptors. Treatment with histone deacetylase (HDAC) inhibitors, including valproic acid (VPA) and trichostatin A, upregulates melatonin receptors in cultured cells and the rat brain. VPA increases histone H3 acetylation of the MT1 gene promoter in rat C6 glioma cells, indicating that this epigenetic mechanism is involved in upregulation of MT1 expression. Since HDAC inhibitors can alter DNA methylation, the possible involvement of this other epigenetic mechanism, in the regulation of MT1 expression, was examined. RT-qPCR and western blotting studies confirmed that treatment with the DNA demethylating agent, 5-azacytidine (AZA; 10 or 20 µM) for 24 or 48 h, suppressed DNA methyltransferase 1 mRNA and protein expression in C6 cells. Subsequent treatment with AZA (1-25 µM) for 24 h, revealed a significant concentration-dependent upregulation of MT1 mRNA expression. Moreover, a combination of 5 µM AZA plus 3 mM VPA caused a synergistic upregulation of the MT1 receptor, which exceeded the sum of the independent effects of these drugs. These results show that DNA methylation plays a role in the regulation of the MT1 receptor, consistent with the established effects of this major epigenetic mechanism on gene transcription. Combinatorial epigenetic regulation of melatonin receptor expression could provide novel strategies for enhancing the oncostatic, neuroprotective and other therapeutic benefits of this pleiotropic indoleamine and its receptor agonists.


Assuntos
Azacitidina/farmacologia , Glioma/metabolismo , Receptor MT1 de Melatonina/metabolismo , Animais , Azacitidina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Melatonina/metabolismo , Melatonina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Receptor MT1 de Melatonina/genética , Receptores de Melatonina/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA