Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Heart Lung Transplant ; 43(2): 303-313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37783299

RESUMO

BACKGROUND: Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. METHODS: Transcriptomics and proteomics analyses defined the pathways associated with cardiac magnetic resonance imaging (MRI)-derived values of RV hypertrophy, dilation, and dysfunction in control and pulmonary artery banded (PAB) pigs. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare molecular responses across species. RESULTS: PAB pigs displayed significant right ventricle/ventricular (RV) hypertrophy, dilation, and dysfunction as quantified by cardiac magnetic resonance imaging. Transcriptomic and proteomic analyses identified pathways associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the 3 species. FAO and ETC proteins and transcripts were mostly downregulated in rats but were predominately upregulated in PAB pigs, which more closely matched the human response. All species exhibited similar dysregulation of the dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy pathways. CONCLUSIONS: The porcine metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and pigs may more accurately recapitulate metabolic aspects of human RVF.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Direita , Humanos , Ratos , Animais , Suínos , Multiômica , Proteômica , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/patologia , Função Ventricular Direita , Modelos Animais de Doenças , Remodelação Ventricular/fisiologia
2.
JACC Basic Transl Sci ; 8(3): 239-254, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37034280

RESUMO

Intermittent fasting (IF) extends life span via pleotropic mechanisms, but one important molecular mediator is adenosine monophosphate-activated protein kinase (AMPK). AMPK enhances lipid metabolism and modulates microtubule dynamics. Dysregulation of these molecular pathways causes right ventricular (RV) failure in patients with pulmonary arterial hypertension. In rodent pulmonary arterial hypertension, IF activates RV AMPK, which restores mitochondrial and peroxisomal morphology and restructures mitochondrial and peroxisomal lipid metabolism protein regulation. In addition, IF increases electron transport chain protein abundance and activity in the right ventricle. Echocardiographic and hemodynamic measures of RV function are positively associated with fatty acid oxidation and electron transport chain protein levels. IF also combats heightened microtubule density, which normalizes transverse tubule structure.

3.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798212

RESUMO

Right ventricular failure (RVF) is a leading cause of morbidity and mortality in multiple cardiovascular diseases, but there are no approved treatments for RVF as therapeutic targets are not clearly defined. Contemporary transcriptomic/proteomic evaluations of RVF are predominately conducted in small animal studies, and data from large animal models are sparse. Moreover, a comparison of the molecular mediators of RVF across species is lacking. Here, we used transcriptomics and proteomics analyses to define the molecular pathways associated with cardiac MRI-derived values of RV hypertrophy, dilation, and dysfunction in pulmonary artery banded (PAB) piglets. Publicly available data from rat monocrotaline-induced RVF and pulmonary arterial hypertension patients with preserved or impaired RV function were used to compare the three species. Transcriptomic and proteomic analyses identified multiple pathways that were associated with RV dysfunction and remodeling in PAB pigs. Surprisingly, disruptions in fatty acid oxidation (FAO) and electron transport chain (ETC) proteins were different across the three species. FAO and ETC proteins and transcripts were mostly downregulated in rats, but were predominately upregulated in PAB pigs, which more closely matched the human data. Thus, the pig PAB metabolic molecular signature was more similar to human RVF than rodents. These data suggest there may be divergent molecular responses of RVF across species, and that pigs more accurately recapitulate the metabolic aspects of human RVF.

4.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798293

RESUMO

Right ventricular dysfunction (RVD) is a risk factor for mortality in multiple cardiovascular diseases, but approaches to combat RVD are lacking. Therapies used for left heart failure are largely ineffective in RVD, and thus the identification of molecules that augment RV function could improve outcomes in a wide-array of cardiac limitations. Junctophilin-2 (JPH2) is an essential protein that plays important roles in cardiomyocytes, including calcium handling/maintenance of t-tubule structure and gene transcription. Additionally, JPH2 may regulate mitochondrial function as Jph2 knockout mice exhibit cardiomyocyte mitochondrial swelling and cristae derangements. Moreover, JPH2 knockdown in embryonic stem cell-derived cardiomyocytes induces downregulation of the mitochondrial protein mitofusin-2 (MFN2), which disrupts mitochondrial cristae structure and transmembrane potential. Impaired mitochondrial metabolism drives RVD, and here we evaluated the mitochondrial role of JPH2. We showed JPH2 directly interacts with MFN2, ablation of JPH2 suppresses mitochondrial biogenesis, oxidative capacity, and impairs lipid handling in iPSC-CM. Gene therapy with AAV9-JPH2 corrects RV mitochondrial morphological defects, mitochondrial fatty acid metabolism enzyme regulation, and restores the RV lipidomic signature in the monocrotaline rat model of RVD. Finally, AAV-JPH2 improves RV function without altering PAH severity, showing JPH2 provides an inotropic effect to the dysfunction RV.

5.
Front Cardiovasc Med ; 9: 940932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093169

RESUMO

Background: Heightened glycolytic flux is associated with right ventricular (RV) dysfunction in pulmonary arterial hypertension (PAH). Methylglyoxal, a glycolysis byproduct, is a highly reactive dicarbonyl that has toxic effects via non-enzymatic post-translational modifications (protein glycation). Methylglyoxal is degraded by the glyoxylase system, which includes the rate-limiting enzyme glyoxylase-1 (GLO1), to combat dicarbonyl stress. However, the potential consequences of excess protein glycation on RV function are unknown. Methods: Bioinformatics analysis of previously identified glycated proteins predicted how protein glycation regulated cardiac biology. Methylglyoxal treatment of H9c2 cardiomyocytes evaluated the consequences of excess protein glycation on mitochondrial respiration. The effects of adeno-associated virus serotype 9-mediated (AAV9) GLO1 expression on RV function in monocrotaline rats were quantified with echocardiography and hemodynamic studies. Immunoblots and immunofluorescence were implemented to probe the effects of AAV-Glo1 on total protein glycation and fatty acid oxidation (FAO) and fatty acid binding protein levels. Results: In silico analyses highlighted multiple mitochondrial metabolic pathways may be affected by protein glycation. Exogenous methylglyoxal minimally altered mitochondrial respiration when cells metabolized glucose, however methylglyoxal depressed FAO. AAV9-Glo1 increased RV cardiomyocyte GLO1 expression, reduced total protein glycation, partially restored mitochondrial density, and decreased lipid accumulation. In addition, AAV9-Glo1 increased RV levels of FABP4, a fatty acid binding protein, and hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunits alpha and beta (HADHA and HADHB), the two subunits of the mitochondrial trifunctional protein for FAO. Finally, AAV9-Glo1 blunted RV fibrosis and improved RV systolic and diastolic function. Conclusion: Excess protein glycation promotes RV dysfunction in preclinical PAH, potentially through suppression of FAO.

6.
Circ Heart Fail ; 15(1): e008574, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923829

RESUMO

BACKGROUND: Right ventricular dysfunction (RVD) is the leading cause of death in pulmonary arterial hypertension (PAH), but no RV-specific therapy exists. We showed microtubule-mediated junctophilin-2 dysregulation (MT-JPH2 pathway) causes t-tubule disruption and RVD in rodent PAH, but the druggable regulators of this critical pathway are unknown. GP130 (glycoprotein 130) activation induces cardiomyocyte microtubule remodeling in vitro; however, the effects of GP130 signaling on the MT-JPH2 pathway and RVD resulting from PAH are undefined. METHODS: Immunoblots quantified protein abundance, quantitative proteomics defined RV microtubule-interacting proteins (MT-interactome), metabolomics evaluated the RV metabolic signature, and transmission electron microscopy assessed RV cardiomyocyte mitochondrial morphology in control, monocrotaline, and monocrotaline-SC-144 (GP130 antagonist) rats. Echocardiography and pressure-volume loops defined the effects of SC-144 on RV-pulmonary artery coupling in monocrotaline rats (8-16 rats per group). In 73 patients with PAH, the relationship between interleukin-6, a GP130 ligand, and RVD was evaluated. RESULTS: SC-144 decreased GP130 activation, which normalized MT-JPH2 protein expression and t-tubule structure in the monocrotaline RV. Proteomics analysis revealed SC-144 restored RV MT-interactome regulation. Ingenuity pathway analysis of dysregulated MT-interacting proteins identified a link between microtubules and mitochondrial function. Specifically, SC-144 prevented dysregulation of electron transport chain, Krebs cycle, and the fatty acid oxidation pathway proteins. Metabolomics profiling suggested SC-144 reduced glycolytic dependence, glutaminolysis induction, and enhanced fatty acid metabolism. Transmission electron microscopy and immunoblots indicated increased mitochondrial fission in the monocrotaline RV, which SC-144 mitigated. GP130 antagonism reduced RV hypertrophy and fibrosis and augmented RV-pulmonary artery coupling without altering PAH severity. In patients with PAH, higher interleukin-6 levels were associated with more severe RVD (RV fractional area change 23±12% versus 30±10%, P=0.002). CONCLUSIONS: GP130 antagonism reduces MT-JPH2 dysregulation, corrects metabolic derangements in the RV, and improves RVD in monocrotaline rats.


Assuntos
Receptor gp130 de Citocina/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Hipertrofia Ventricular Direita/tratamento farmacológico , Proteínas de Membrana/farmacologia , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Receptor gp130 de Citocina/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
7.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019763

RESUMO

The hexosamine biosynthetic pathway (HBP) converts glucose to uridine-diphosphate-N-acetylglucosamine, which, when added to serines or threonines, modulates protein function through protein O-GlcNAcylation. Glutamine-fructose-6-phosphate amidotransferase (GFAT) regulates HBP flux, and AMP-kinase phosphorylation of GFAT blunts GFAT activity and O-GlcNAcylation. While numerous studies demonstrate increased right ventricle (RV) glucose uptake in pulmonary arterial hypertension (PAH), the relationship between O-GlcNAcylation and RV function in PAH is unexplored. Therefore, we examined how colchicine-mediated AMP-kinase activation altered HBP intermediates, O-GlcNAcylation, mitochondrial function, and RV function in pulmonary artery-banded (PAB) and monocrotaline (MCT) rats. AMPK activation induced GFAT phosphorylation and reduced HBP intermediates and O-GlcNAcylation in MCT but not PAB rats. Reduced O-GlcNAcylation partially restored the RV metabolic signature and improved RV function in MCT rats. Proteomics revealed elevated expression of O-GlcNAcylated mitochondrial proteins in MCT RVs, which fractionation studies corroborated. Seahorse micropolarimetry analysis of H9c2 cardiomyocytes demonstrated colchicine improved mitochondrial function and reduced O-GlcNAcylation. Presence of diabetes in PAH, a condition of excess O-GlcNAcylation, reduced RV contractility when compared to nondiabetics. Furthermore, there was an inverse relationship between RV contractility and HgbA1C. Finally, RV biopsy specimens from PAH patients displayed increased O-GlcNAcylation. Thus, excess O-GlcNAcylation may contribute to metabolic derangements and RV dysfunction in PAH.


Assuntos
Diabetes Mellitus/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Disfunção Ventricular Direita/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acilação , Adulto , Idoso , Animais , Linhagem Celular , Estudos de Coortes , Colchicina/farmacologia , Diabetes Mellitus/diagnóstico por imagem , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Regulação da Expressão Gênica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hexosaminas/metabolismo , Humanos , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Metaboloma , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Monocrotalina/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/fisiopatologia
8.
Nat Commun ; 9(1): 856, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472544

RESUMO

In the originally published version of this Article, an incorrect grant number, RO1 NS083549, was acknowledged. The correct grant number is RO1 AR055685. This error has now been corrected in both the PDF and HTML versions of the Article.

9.
J Cell Sci ; 130(21): 3685-3697, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28935672

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by inappropriate expression of the double homeodomain protein DUX4. DUX4 has bimodal effects, inhibiting myogenic differentiation and blocking MyoD at low levels of expression, and killing myoblasts at high levels. Pax3 and Pax7, which contain related homeodomains, antagonize the cell death phenotype of DUX4 in C2C12 cells, suggesting some type of competitive interaction. Here, we show that the effects of DUX4 on differentiation and MyoD expression require the homeodomains but do not require the C-terminal activation domain of DUX4. We tested the set of equally related homeodomain proteins (Pax6, Pitx2c, OTX1, Rax, Hesx1, MIXL1 and Tbx1) and found that only Pax3 and Pax7 display phenotypic competition. Domain analysis on Pax3 revealed that the Pax3 homeodomain is necessary for phenotypic competition, but is not sufficient, as competition also requires the paired and transcriptional activation domains of Pax3. Remarkably, substitution mutants in which DUX4 homeodomains are replaced by Pax7 homeodomains retain the ability to inhibit differentiation and to induce cytotoxicity.


Assuntos
Proteínas de Homeodomínio/genética , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Células Musculares/patologia , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Mioblastos/patologia , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/metabolismo , Domínios Proteicos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
10.
Nat Commun ; 8(1): 550, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916757

RESUMO

Facioscapulohumeral muscular dystrophy is a slowly progressive but devastating myopathy caused by loss of repression of the transcription factor DUX4; however, DUX4 expression is very low, and protein has not been detected directly in patient biopsies. Efforts to model DUX4 myopathy in mice have foundered either in being too severe, or in lacking muscle phenotypes. Here we show that the endogenous facioscapulohumeral muscular dystrophy-specific DUX4 polyadenylation signal is surprisingly inefficient, and use this finding to develop an facioscapulohumeral muscular dystrophy mouse model with muscle-specific doxycycline-regulated DUX4 expression. Very low expression levels, resulting in infrequent DUX4 + myonuclei, evoke a slow progressive degenerative myopathy. The degenerative process involves inflammation and a remarkable expansion in the fibroadipogenic progenitor compartment, leading to fibrosis. These animals also show high frequency hearing deficits and impaired skeletal muscle regeneration after injury. This mouse model will facilitate in vivo testing of therapeutics, and suggests the involvement of fibroadipogenic progenitors in facioscapulohumeral muscular dystrophy.Facioscapulohumeral muscular dystrophy is a severe myopathy that is caused by abnormal activation of DUX4, and for which a suitable mouse model does not exist. Here, the authors generate a novel mouse model with titratable expression of DUX4, and show that it recapitulates several features of the human pathology.


Assuntos
Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Genes Dev ; 30(2): 164-76, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773002

RESUMO

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , N-Acetilglucosaminiltransferases/metabolismo , Transdução de Sinais/fisiologia , Acilação , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Mutação , N-Acetilglucosaminiltransferases/genética , Ligação Proteica
12.
Cell Rep ; 8(5): 1484-96, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25176645

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an enigmatic disease associated with epigenetic alterations in the subtelomeric heterochromatin of the D4Z4 macrosatellite repeat. Each repeat unit encodes DUX4, a gene that is normally silent in most tissues. Besides muscular loss, most patients suffer retinal vascular telangiectasias. To generate an animal model, we introduced a doxycycline-inducible transgene encoding DUX4 and 3' genomic DNA into a euchromatic region of the mouse X chromosome. Without induction, DUX4 RNA was expressed at low levels in many tissues and animals displayed a variety of unexpected dominant leaky phenotypes, including male-specific lethality. Remarkably, rare live-born males expressed DUX4 RNA in the retina and presented a retinal vascular telangiectasia. By using doxycycline to induce DUX4 expression in satellite cells, we observed impaired myogenesis in vitro and in vivo. This mouse model, which shows pathologies due to FSHD-related D4Z4 sequences, is likely to be useful for testing anti-DUX4 therapies in FSHD.


Assuntos
Genes Dominantes , Genes Ligados ao Cromossomo X , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Eucromatina/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Distrofia Muscular Facioescapuloumeral/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/metabolismo , Retina/patologia
13.
Stem Cells Dev ; 22(17): 2440-8, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23560660

RESUMO

Misexpression of the double homeodomain protein DUX4 in muscle is believed to cause facioscapulohumeral muscular dystrophy (FSHD). Although strategies are being devised to inhibit DUX4 activity in FSHD, there is little known about the normal function of this protein. Expression of DUX4 has been reported in pluripotent cells and testis. To test the idea that DUX4 may be involved in initiating a germ lineage program in pluripotent cells, we interrogated the effect of expressing the human DUX4 gene at different stages during in vitro differentiation of murine embryonic stem (ES) cells. We find that expression of even low levels of DUX4 is incompatible with pluripotency: DUX4-expressing ES cells downregulate pluripotency markers and rapidly differentiate even in the presence of leukemia inhibitory factor (LIF) and bone morphogenetic protein 4 (BMP4). Transcriptional profiling revealed unexpectedly that DUX4 induced a neurectodermal program. Embryoid bodies exposed to a pulse of DUX4 expression displayed severely inhibited mesodermal differentiation, but acquired neurogenic potential. In a serum-containing medium in which neurogenic differentiation is minimal, DUX4 expression served as a neural-inducing factor, enabling the differentiation of Tuj1+ neurites. These data suggest that besides effects in muscle and germ cells, the involvement of DUX4 in neurogenesis should be considered as anti-DUX4 therapies are developed.


Assuntos
Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neurogênese/genética , Animais , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Corpos Embrioides/metabolismo , Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Fator Inibidor de Leucemia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo
14.
Neurology ; 80(4): 392-9, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23284062

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disease with an unclear genetic mechanism. Most patients have a contraction of the D4Z4 macrosatellite repeat array at 4qter, which is thought to cause partial demethylation (FSHD1) of the contracted allele. Demethylation has been surveyed at 3 restriction enzyme sites in the first repeat and only a single site across the entire array, and current models postulate that a generalized D4Z4 chromatin alteration causes FSHD. The background of normal alleles has confounded the study of epigenetic alterations; however, rare patients (FSHD2) have a form of the disease in which demethylation is global, i.e., on all D4Z4 elements throughout the genome. Our objective was to take advantage of the global nature of FSHD2 to identify where disease-relevant methylation changes occur within D4Z4. METHODS: Using bisulfite sequencing of DNA from blood and myoblast cells, methylation levels at 74 CpG sites across 3 disparate regions within D4Z4 were measured in FSHD2 patients and controls. RESULTS: We found that rates of demethylation caused by FSHD2 are not consistent across D4Z4. We identified a focal region of extreme demethylation within a 5' domain, which we named DR1. Other D4Z4 regions, including the DUX4 ORF, were hypomethylated but to a much lesser extent. CONCLUSIONS: These data challenge the simple view that FSHD is caused by a broad "opening" of D4Z4 and lead us to postulate that the region of focal demethylation is the site of action of the key D4Z4 chromatin regulatory factors that go awry in FSHD.


Assuntos
Cromatina/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Distrofia Muscular Facioescapuloumeral/genética , Mioblastos/fisiologia , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 4 , Proteínas de Homeodomínio/genética , Humanos , Fenótipo , Mapeamento por Restrição
15.
Nat Cell Biol ; 13(1): 72-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21170035

RESUMO

During development, haemogenesis occurs invariably at sites of vasculogenesis. Between embryonic day (E) 9.5 and E10.5 in mice, endothelial cells in the caudal part of the dorsal aorta generate haematopoietic stem cells and are referred to as haemogenic endothelium. The mechanisms by which haematopoiesis is restricted to this domain, and how the morphological transformation from endothelial to haematopoietic is controlled are unknown. We show here that HoxA3, a gene uniquely expressed in the embryonic but not yolk sac vasculature, restrains haematopoietic differentiation of the earliest endothelial progenitors, and induces reversion of the earliest haematopoietic progenitors into CD41-negative endothelial cells. This reversible modulation of endothelial-haematopoietic state is accomplished by targeting key haematopoietic transcription factors for downregulation, including Runx1, Gata1, Gfi1B, Ikaros, and PU.1. Through loss-of-function, and gain-of-function epistasis experiments, and the identification of antipodally regulated targets, we show that among these factors, Runx1 is uniquely able to erase the endothelial program set up by HoxA3. These results suggest both why a frank endothelium does not precede haematopoiesis in the yolk sac, and why haematopoietic stem cell generation requires Runx1 expression only in endothelial cells.


Assuntos
Embrião de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Hematopoese , Proteínas de Homeodomínio/genética , Animais , Sequência de Bases , Diferenciação Celular , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/embriologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos/citologia , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Mesoderma/irrigação sanguínea , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo , Saco Vitelino/irrigação sanguínea , Saco Vitelino/embriologia , Saco Vitelino/metabolismo
16.
Biochim Biophys Acta ; 1800(2): 49-56, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19961900

RESUMO

The role in plants of posttranslational modification of proteins with O-linked N-acetylglucosamine and the evolution and function of O-GlcNAc transferases responsible for this modification are reviewed. Phylogenetic analysis of eukaryotic O-GlcNAc transferases (OGTs) leads us to propose that plants have two distinct OGTs, SEC- and SPY-like, that originated in prokaryotes. Animals and some fungi have a SEC-like enzyme while plants have both. Green algae and some members of the Apicomplexa and amoebozoa have the SPY-like enzyme. Interestingly the progenitor of the Apicomplexa lineage likely had a photosynthetic plastid that persists in a degenerated form in some species, raising the possibility that plant SPY-like OGTs are derived from a photosynthetic endosymbiont. OGTs have multiple tetratricopeptide repeats (TPRs) that within the SEC- and SPY-like classes exhibit evidence of strong selective pressure on specific repeats, suggesting that the function of these repeats is conserved. SPY-like and SEC-like OGTs have both unique and overlapping roles in the plant. The phenotypes of sec and spy single and double mutants indicate that O-GlcNAc modification is essential and that it affects diverse plant processes including response to hormones and environmental signals, circadian rhythms, development, intercellular transport and virus infection. The mechanistic details of how O-GlcNAc modification affects these processes are largely unknown. A major impediment to understanding this is the lack of knowledge of the identities of the modified proteins.


Assuntos
Acetilglucosamina/metabolismo , Evolução Molecular , N-Acetilglucosaminiltransferases/metabolismo , Plantas/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/fisiologia , N-Acetilglucosaminiltransferases/fisiologia , Filogenia , Plantas/genética , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos/genética , Proteínas Repressoras/fisiologia , Alinhamento de Sequência
17.
Planta ; 229(1): 1-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18936962

RESUMO

This review covers recent advances in gibberellin (GA) signaling. GA signaling is now understood to hinge on DELLA proteins. DELLAs negatively regulate GA response by activating the promoters of several genes including Xerico, which upregulates the abscisic acid pathway which is antagonistic to GA. DELLAs also promote transcription of the GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and indirectly regulate GA biosynthesis genes enhancing GA responsiveness and feedback control. A structural analysis of GID1 provides a model for understanding GA signaling. GA binds within a pocket of GID1, changes GID1 conformation and increases the affinity of GID1 for DELLA proteins. GA/GID1/DELLA has increased affinity for an F-Box protein and DELLAs are subsequently degraded via the proteasome. Therefore, GA induces growth through degradation of the DELLAs. The binding of DELLA proteins to three of the PHYTOCHROME INTERACTING FACTOR (PIF) proteins integrates light and GA signaling pathways. This binding prevents PIFs 3, 4, and 5 from functioning as positive transcriptional regulators of growth in the dark. Since PIFs are degraded in light, these PIFs can only function in the combined absence of light and presence of GA. New analyses suggest that GA signaling evolved at the same time or just after the plant vascular system and before plants acquired the capacity for seed reproduction. An analysis of sequences cloned from Physcomitrella suggests that GID1 and DELLAs were the first to evolve but did not initially interact. The more recently diverging spike moss Selaginella has all the genes required for GA biosynthesis and signaling, but the role of GA response in Selaginella physiology remains a mystery.


Assuntos
Giberelinas/metabolismo , Transdução de Sinais , Evolução Biológica , Redes Reguladoras de Genes/efeitos da radiação , Luz , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos da radiação
18.
FEBS Lett ; 580(25): 5829-35, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17027982

RESUMO

The capsid protein of Plum pox virus (PPV-CP) is modified with O-linked GlcNAc (O-GlcNAc). While Arabidopsis has two O-GlcNAc transferases, SECRET AGENT (SEC) and SPINDLY (SPY), previous work suggests that SEC modifies PPV-CP and that the modification plays a role in the infection process. Here, we show that when co-expressed in Escherichia coli SEC modifies PPV-CP. Deletion mapping and site-directed mutagenesis identified three threonine and a serine located near the N-terminus of PPV-CP that are modified by SEC. Two of these threonines have recently been shown to be modified in virus from plants suggesting that SEC has the same specificity in plants and E. coli.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas do Capsídeo/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Vírus Eruptivo da Ameixa/metabolismo , Substituição de Aminoácidos , Arabidopsis/enzimologia , Sequência de Bases , Sítios de Ligação , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , DNA Viral/genética , Glicosilação , Mutagênese Sítio-Dirigida , Vírus Eruptivo da Ameixa/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Serina/química , Treonina/química
19.
FEBS Lett ; 580(25): 5822-8, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17014851

RESUMO

A large number of O-linked N-acetylglucosamine (O-GlcNAc) residues have been mapped in vertebrate proteins, however targets of O-GlcNAcylation in plants still have not been characterized. We show here that O-GlcNAcylation of the N-terminal region of the capsid protein of Plum pox virus resembles that of animal proteins in introducing O-GlcNAc monomers. Thr-19 and Thr-24 were specifically O-GlcNAcylated. These residues are surrounded by amino acids typical of animal O-GlcNAc acceptor sites, suggesting that the specificity of O-GlcNAc transferases is conserved among plants and animals. In laboratory conditions, mutations preventing O-GlcNAcylation of Thr-19 and Thr-24 did not have noticeable effects on PPV competence to infect Prunus persicae or Nicotiana clevelandii. However, the fact that Thr-19 and Thr-24 are highly conserved among different PPV strains suggests that their O-GlcNAc modification could be relevant for efficient competitiveness in natural conditions.


Assuntos
Proteínas do Capsídeo/química , Vírus Eruptivo da Ameixa/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , DNA Viral/genética , Glicosilação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Doenças das Plantas/virologia , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/patogenicidade , Processamento de Proteína Pós-Traducional , Prunus/virologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Treonina/química , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA