Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675077

RESUMO

As internal curing self-healing agents in concrete repair, the basic properties of superabsorbent polymers (SAPs), such as water absorption and release properties, are generally affected by several factors, including temperature and humidity solution properties and SAP particle size, which regulate the curing effect and the durability of cementitious composites. This study aimed to investigate the water retention capacities of SAPs in an alkaline environment over extended periods by incorporating liquid sodium silicate (SS) into SAP-water mixtures and examining the influence of temperature. The influence of SAP particle size on mortar's water absorption capacity and mechanical behavior was investigated. Two mixing techniques for SAPs (dry and pre-wetting) were employed to assess the influence of SAP on cement mortars' slump, mechanical properties, and cracking resistance. Four types of SAPs (SAP-a, SAP-b, SAP-c, and SAP-d), based on the molecular chains and particle size, were mixed with SS to study their water absorption over 30 days. The results showed that SAPs exhibit rapid water absorption within the first 30 min, exceeding 85% before reaching a saturation point, and the chemical and temperature variations in the water significantly affected water absorption and desorption. The filtration results revealed that SAP-d exhibited the slowest water release rate, retaining water for considerably longer than the other three types of SAPs. The mechanical properties of SAP mortar were reduced due to the addition of an SAP and the improved cracking resistance of the cement mortars.

2.
Polymers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896357

RESUMO

Polyurethane (PU) composite is increasingly used as a repair material for civil engineering infrastructure, including runway, road pavement, and buildings. Evaluation of polyurethane grouting (PUG) material is critical to achieve a desirable maintenance effect. This study aims to evaluate the flexural behavior of normal concrete repaired with polyurethane grout (NC-PUG) under a three-point bending test. A finite element (FE) model was developed to simulate the flexural response of the NC-PUG specimens. The equivalent principle response of the NC-PUG was analyzed through a three-dimensional finite element model (3D FEM). The NC and PUG properties were simulated using stress-strain relations acquired from compressive and tensile tests. The overlaid PUG material was prepared by mixing PU and quartz sand and overlayed on the either top or bottom surface of the concrete beam. Two different overlaid thicknesses were adopted, including 5 mm and 10 mm. The composite NC-PUG specimens were formed by casting a PUG material using different overlaid thicknesses and configurations. The reference specimen showed the highest average ultimate flexural stress of 5.56 MPa ± 2.57% at a 95% confidence interval with a corresponding midspan deflection of 0.49 mm ± 13.60%. However, due to the strengthened effect of the PUG layer, the deflection of the composite specimen was significantly improved. The concrete specimens retrofitted at the top surface demonstrated a typical linear pattern from the initial loading stage until the complete failure of the specimen. Moreover, the concrete specimens retrofitted at the bottom surface exhibit two deformation regions before the complete failure. The FE analysis showed good agreement between the numerical model and the experimental test result. The numerical model accurately predicted the flexural strength of the NC-PUG beam, slightly underestimating Ke by 4% and overestimating the ultimate flexural stress by 3%.

3.
Environ Sci Pollut Res Int ; 29(44): 67076-67102, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35513616

RESUMO

Calcium carbide residue (CCR) is generated from acetylene gas production, and it is highly alkaline and contains a very high amount of calcium. Nano silica (NS), on the other hand, is mostly used in combination with other pozzolanic materials in concrete to ignite the reactivity of the material and to improve the properties of the concrete. This study investigated the effect of CCR incorporated in concrete mixtures to partially replace cement content at 0 to 30% (interval of 7.5%). NS was used as an additive by weight of binder at levels 0 to 4% in increment of 1%. Thus, response surface methodology (RSM) was employed to investigate the effects of CCR and NS on the properties of the concrete, including compressive strength, flexural strength, splitting tensile strength, modulus of elasticity (MoE), and water absorption. The RSM was used for model development predicted concrete's properties and carried out mixture multi-objective optimization by maximizing strengths, MoE, and minimizing water absorption. The results showed that using up to 15% CCR improved the strengths, MoE, and water absorption of the concrete. Adding up to 3% NS further enhanced the strengths, MoE, and water absorption significantly. The developed models for predicting the properties of the concrete using RSM were highly efficient with high degree of correlation. The optimization solutions indicated that the best optimum or best mix combination based on maximum strengths and MoE with minimum water absorption was achieved by replacing 10.6% cement with CCR and adding 1.95% NS by the weight of cementitious materials.


Assuntos
Materiais de Construção , Dióxido de Silício , Acetileno/análogos & derivados , Cálcio , Dióxido de Silício/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA