Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Evol Appl ; 16(12): 1921-1936, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38143898

RESUMO

Iteroparity represents an important but often overlooked component of life history in anadromous Atlantic salmon. Here, we combined individual DNA profiling and scale reading to identify repeat spawners among ~8000 adult salmon captured in a fish trap in the river Etne, Norway, in the period 2015-2019. Additionally, 171 outward migrating kelts were captured in the spring of 2018-2020 and identified using molecular methods to estimate weight loss since ascending the river to spawn. The overall frequency of repeat spawners identified using molecular methods and scale reading combined was 7% in females and 3% in males (5% in total). Most of these (83%) spent one full year reconditioning at sea before returning for their second spawning, with a larger body size compared with their size at first spawning, gaining on average 15.9 cm. A single female migrating back into the river for a fifth breeding season was also identified. On average, kelts lost 40% bodyweight in the river, and more female than male kelts were captured during outward migration. The date of arrival in the upstream fish trap was significantly but moderately correlated between maiden and second entry to the river for alternate and consecutive spawners. The estimated contribution from repeat spawners to the total number of eggs deposited in the river each year varied between 2% and 17% (average 12%). Molecular-based methods marginally underestimated the number of repeat spawners compared with scale reading (5% vs 7%) likely due to a small number of returning spawners not being trapped and sampled. Differences between the methods were most evident when classifying the spawning strategy (alternate or consecutive-year repeat spawners), where the scale method identified proportionally more consecutive-year repeat spawners than the molecular method. This unique data set reveals previously unstudied components of this life history strategy and demonstrates the importance of repeat spawners in population recruitment.

2.
BMC Evol Biol ; 16(1): 264, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905882

RESUMO

BACKGROUND: Domestication of Atlantic salmon for commercial aquaculture has resulted in farmed salmon displaying substantially higher growth rates than wild salmon under farming conditions. In contrast, growth differences between farmed and wild salmon are much smaller when compared in the wild. The mechanisms underlying this contrast between environments remain largely unknown. It is possible that farmed salmon have adapted to the high-energy pellets developed specifically for aquaculture, contributing to inflated growth differences when fed on this diet. We studied growth and survival of 15 families of farmed, wild and F1 hybrid salmon fed three contrasting diets under hatchery conditions; a commercial salmon pellet diet, a commercial carp pellet diet, and a mixed natural diet consisting of preserved invertebrates commonly found in Norwegian rivers. RESULTS: For all groups, despite equal numbers of calories presented by all diets, overall growth reductions as high 68 and 83%, relative to the salmon diet was observed in the carp and natural diet treatments, respectively. Farmed salmon outgrew hybrid (intermediate) and wild salmon in all treatments. The relative growth difference between wild and farmed fish was highest in the carp diet (1: 2.1), intermediate in the salmon diet (1:1.9) and lowest in the natural diet (1:1.6). However, this trend was non-significant, and all groups displayed similar growth reaction norms and plasticity towards differing diets across the treatments. CONCLUSIONS: No indication of genetic-based adaptation to the form or nutritional content of commercial salmon diets was detected in the farmed salmon. Therefore, we conclude that diet alone, at least in the absence of other environmental stressors, is not the primary cause for the large contrast in growth differences between farmed and wild salmon in the hatchery and wild. Additionally, we conclude that genetically-increased appetite is likely to be the primary reason why farmed salmon display higher growth rates than wild salmon when fed ad lib rations under hatchery conditions. Our results contribute towards an understanding of the potential genetic changes that have occurred in farmed salmon in response to domestication, and the potential mechanisms underpinning genetic and ecological interactions between farmed escapees and wild salmonids.


Assuntos
Aquicultura , Evolução Biológica , Dieta , Salmo salar/crescimento & desenvolvimento , Adaptação Biológica , Ração Animal , Animais , Tamanho Corporal , Fazendas , Comportamento Alimentar , Feminino , Masculino , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA