Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 724059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820369

RESUMO

Hypoxia is a universal pathological feature of solid tumors. Hypoxic tumor cells acquire metastatic and lethal phenotypes primarily through the activities of hypoxia-inducible factor 1 alpha (HIF1α). Therefore, HIF1α is considered as a promising therapeutic target. However, HIF inhibitors have not proven to be effective in clinical testing. The underlying mechanism is unclear. We report that oncogenic protein ID1 is upregulated in hypoxia by HIF1α shRNA or pharmacological inhibitors. In turn, ID1 supports tumor growth in hypoxia in vitro and in xenografts in vivo, conferring adaptive survival response and resistance. Mechanistically, ID1 proteins interfere HIF1-mediated gene transcription activation, thus ID1 protein degradation is accelerated by HIF1α-dependent mechanisms in hypoxia. Inhibitions of HIF1α rescues ID1, which compensates the loss of HIF1α by the upregulation of GLS2 and glutamine metabolism, thereby switching the metabolic dependency of HIF1α -inhibited cells from glucose to glutamine.

2.
Cancer Res ; 70(8): 3239-48, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20388787

RESUMO

To identify potential mechanisms underlying prostate cancer chemotherapy response and resistance, we compared the gene expression profiles in high-risk human prostate cancer specimens before and after neoadjuvant chemotherapy and radical prostatectomy. Among the molecular signatures associated with chemotherapy, transcripts encoding inhibitor of DNA binding 1 (ID1) were significantly upregulated. The patient biochemical relapse status was monitored in a long-term follow-up. Patients with ID1 upregulation were found to be associated with longer relapse-free survival than patients without ID1 increase. This in vivo clinical association was mechanistically investigated. The chemotherapy-induced ID1 upregulation was recapitulated in the prostate cancer cell line LNCaP. Docetaxel dose-dependently induced ID1 transcription, which was mediated by ID1 promoter E-box chromatin modification and c-Myc binding. Stable ID1 overexpression in LNCaP increased cell proliferation, promoted G(1) cell cycle progression, and enhanced docetaxel-induced cytotoxicity. These changes were accompanied by a decrease in cellular mitochondria content, an increase in BCL2 phosphorylation at serine 70, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. In contrast, ID1 siRNA in the LNCaP and C42B cell lines reduced cell proliferation and decreased docetaxel-induced cytotoxicity by inhibiting cell death. ID1-mediated chemosensitivity enhancement was in part due to ID1 suppression of p21. Overexpression of p21 in LNCaP-ID1-overexpressing cells restored the p21 level and reversed ID1-enhanced chemosensitivity. These molecular data provide a mechanistic rationale for the observed in vivo clinical association between ID1 upregulation and relapse-free survival. Taken together, it shows that ID1 expression has a novel therapeutic role in prostate cancer chemotherapy and prognosis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína 1 Inibidora de Diferenciação/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Taxoides/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/química , Docetaxel , Relação Dose-Resposta a Droga , Fase G1 , Humanos , Masculino , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA