Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37296911

RESUMO

PURPOSE: The purpose of this study was to assess the effect of folic acid (FA) supplementation on colitis-associated colorectal cancer (CRC) using the azoxymethane/dextran sulfate sodium (AOM/DSS) model. METHODS: Mice were fed a chow containing 2 mg/kg FA at baseline and randomized after the first DSS treatment to receive 0, 2, or 8 mg/kg FA chow for 16 weeks. Colon tissue was collected for histopathological evaluation, genome-wide methylation analyses (Digital Restriction Enzyme Assay of Methylation), and gene expression profiling (RNA-Seq). RESULTS: A dose-dependent increase in the multiplicity of colonic dysplasias was observed, with the multiplicity of total and polypoid dysplasias higher (64% and 225%, respectively) in the 8 mg FA vs. the 0 mg FA group (p < 0.001). Polypoid dysplasias were hypomethylated, as compared to the non-neoplastic colonic mucosa (p < 0.05), irrespective of FA treatment. The colonic mucosa of the 8 mg FA group was markedly hypomethylated as compared to the 0 mg FA group. Differential methylation of genes involved in Wnt/ß-catenin and MAPK signaling resulted in corresponding alterations in gene expression within the colonic mucosa. CONCLUSIONS: High-dose FA created an altered epigenetic field effect within the non-neoplastic colonic mucosa. The observed decrease in site-specific DNA methylation altered oncogenic pathways and promoted colitis-associated CRC.

2.
Front Oncol ; 11: 705562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513688

RESUMO

An urgent need exists to identify efficacious therapeutic preventive interventions for individuals who are at high risk of developing colorectal cancer. To maximize the benefits of preventive intervention, it is vital to identify the time interval during which the initiation of a preventive intervention will lead to an optimal outcome. The goal of the present study was to determine if oncogenic events can be detected in the nonneoplastic colonic mucosa of Apc+/Min-FCCC mice prior to formation of the first adenoma, thus defining an earlier point of intervention along the cancer continuum. Tissues taken at three potential points of intervention were characterized: prior to Apc mutation (wild type Apc+/+-FCCC mice); after initiation but prior to colon adenoma formation (tumor-free Apc+/Min-FCCC mice); and after formation of the first colon adenoma (tumor-bearing Apc+/Min-FCCC mice). Experimentation focused on molecular processes that are dysregulated in early colon lesions: 1) cellular proliferation (proliferative index and size of the proliferative zone); 2) cellular stemness (expression of Ascl2, Grem1, Lgr5 and Muc2); 3) EGFR signaling (expression of Ereg); and 4) inflammation (expression of Mmp9, Ptsg2, and Reg4, as well as secretion of 18 cytokines involved in immune activation and response). Interestingly, the nonneoplastic colonic mucosa of wild type, tumor-free Apc+/Min-FCCC , and tumor-bearing Apc+/Min-FCCC mice did not display significant differences in average epithelial cell proliferation (fold change 0.8-1.3, p≥0.11), mucosal gene expression (fold change 0.8-1.4, p≥0.22), or secretion of specific cytokines from colonic mucosa (fold change 0.2-1.5, p≥0.06). However, the level of cytokine secretion was highly variable, with many (22% of wild type, 31% of tumor-free Apc+/Min-FCCC , and 31% of tumor-bearing Apc+/Min-FCCC ) mice categorized as outliers (> 1.5 x interquartile ranges below the first quartile or above the third quartile) due to elevated expression of at least one cytokine. In summary, no differences were observed in proliferation, stemness, and EGFR signaling in the colonic mucosa of wild type vs Apc+/Min-FCCC mice, with low baseline cytokine expression, prior to the formation of the first colon adenoma. The results of this study provide valuable baseline data to inform the design of future cancer prevention studies.

3.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671373

RESUMO

Novel immunopreventive strategies are emerging that show great promise for conferring long-term protection to individuals at high risk of developing colorectal cancer. The KISIMA vaccine platform utilizes a chimeric protein comprising: (1) a selected tumor antigen; (2) a cell-penetrating peptide to improve antigen delivery and epitope presentation, and (3) a TLR2/4 agonist to serve as a self-adjuvant. This study examines the ability of a KISIMA vaccine against achaete-scute family bHLH transcription factor 2 (Ascl2), an early colon cancer antigen, to reduce colon tumor formation by stimulating an anti-tumor immune response. Vaccine administrations were well-tolerated and led to circulating antibodies and antigen-specific T cells in a mouse model of colorectal cancer. To assess preventive efficacy, the vaccine was administered to mice either alone or in combination with the immune checkpoint inhibitor anti-PD-1. When delivered to animals prior to colon tumor formation, the combination strategy significantly reduced the development of colon microadenomas and adenomas, as compared to vehicle-treated controls. This response was accompanied by an increase in the intraepithelial density of CD3+ T lymphocytes. Together, these data indicate that the KISIMA-Ascl2 vaccine shows great potential to be a safe and potent immunopreventive intervention for individuals at high risk of developing colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA