Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 22(6): 4600-4643, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37661731

RESUMO

Blackberries and raspberries, commonly known as Rubus berries, are commercially grown worldwide across different climates. Rubus berries contain wide array of phytochemicals, vitamins, dietary fibers, minerals, and unsaturated fatty acids. Nevertheless, these berries have short storage life which is the major constraint in their supply chains leading to higher postharvest losses. Inappropriate harvest handling, physical bruising, insect pests, and postharvest diseases lower the acceptability of fruit among consumers and other supply chain stakeholders. Additionally, the susceptibility to microbial decay, fruit softening, higher ethylene production, respiratory activity, and increased oxidation of anthocyanins, phenolics, and flavonoids considerably affects the marketability of Rubus berries at domestic and international markets. To date, several postharvest strategies such as cold storage, precooling, modified and controlled atmospheres, anti-ripening chemicals, edible coatings, biological agents, and nonchemical alternatives (heat treatment, ultrasound, irradiations, ozone) have been reported to prolong storage life, ensure food safety, and maintain the nutritional quality of Rubus berries. This review briefly encompasses multiple aspects including harvest maturity indices, regulation of fruit ripening, pre and postharvest factors affecting fruit quality, and an update on postharvest quality preservation by employing postharvest technologies to extend the storage life and maintaining the bioactive compounds in Rubus berries which are lacking in the literature. Accordingly, this review provides valuable information to the industry stakeholders and scientists offering relevant solutions, limitations in the application of certain technologies at commercial scale, highlighting research gaps, and paving the way forward for future investigations.


Assuntos
Armazenamento de Alimentos , Rubus , Frutas/química , Antocianinas/análise , Antioxidantes/química
2.
Crit Rev Food Sci Nutr ; : 1-27, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36789587

RESUMO

Jackfruit (Artocarpus heterophyllus Lam.), also known as 'vegetarian's meat', is an excellent source of carbohydrates, protein, fiber, vitamins, minerals, and several phytochemicals. It is a climacteric fruit that exhibits an increase in ethylene biosynthesis and respiration rate during fruit ripening. The market value of jackfruit is reduced due to the deterioration of fruit quality during storage and transportation. There is a lack of standardized harvest maturity index in jackfruit, where consequently, fruit harvested at immature or overmature stages result in poor quality ripe fruit with short storage life. Other factors responsible for its short postharvest life relate to its highly perishable nature, chilling sensitivity and susceptibility to fruit rot which result in significant qualitative and quantitative losses. Various postharvest management techniques have been adopted to extend the storage life, including cold storage, controlled atmosphere storage, modified atmosphere packaging, edible coatings, chemical treatment, and non-chemical alternatives. Diversified products have been prepared from jackfruit to mitigate such losses. This comprehensive review highlights the nutritional profile, fruit ripening physiology, pre and postharvest quality management, and value addition of jackfruit as well as the way forward to reduce postharvest losses in the supply chain.

3.
Environ Sci Pollut Res Int ; 29(7): 10740-10753, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34524676

RESUMO

In the current pandemic scenario, sustainable green products particularly antiviral, antioxidant, and antibacterial in nature are gaining worldwide fame in almost every walk of life. Cassia obovata (C. obovata) has been valorized as a source of yellow natural dye for nylon dyeing. For the isolation of dye extracts and for surface tuning, nylon fabrics were treated with microwave rays up to 10 min. For getting new shades with good to excellent fastness characteristics, sustainable bio-mordants in comparison with chemical mordants have been used at 60 °C, 70 °C, and 80°C. It has been found that for getting effective colorant yield, acidic extract should be exposed to MW ray treatment up to 6 min, and for getting improved fastness rating, bio-mordants have given excellent color characteristics. Statistical optimization of dyeing variable shows that application of 40 mL of C. obovata acidic extract of RE of 6 pH containing 3 g/100 mL of salt when employed at 55 °C for 45 min has given excellent results onto irradiated nylon fabric (RNF). It is inferred that Cassia obovata has an excellent potential for coloration of surface-modified fabrics, where the application of low amount of bio-mordants under statistical optimized conditions has made process more ecological, economical, and sustainable.


Assuntos
Cassia , Antraquinonas , Corantes , Têxteis
4.
J Food Biochem ; 45(4): e13640, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533511

RESUMO

Aloe vera (ALV) with its unique nutritional profile is being used for food, health, and nutraceutical industries globally. Due to its organic nature, ALV gel coating has created lot of interest for exploring its potential in extending the shelf and storage life of fresh produce. ALV gel coating plays imperative role in delaying fruit ripening by lowering ethylene biosynthesis, respiration rate, and internal metabolic activities associated with fruit softening, color development, enzymatic browning, and decay. ALV gel coating reduces the microbial spoilage due to its antifungal properties and maintains visual appearance, firmness, sugar: acid ratio, total antioxidants, and phenolic contents with conserved eating quality. ALV coated fruits and vegetables showed reduced weight loss, superoxide ion ( O2-∙ ), hydrogen peroxide (H2 O2 ), ion leakage, and soluble solids content and exhibited higher acidity, anthocyanins, ascorbic acid, catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) activities. It also delayed the enzymatic browning by inducing peroxidase (POD) activity during storage. Recent local studies also revealed that ALV gel coating markedly conserved higher consuming quality and extended storage period (>1.34-fold) of different fruits and vegetables. Overall, Aloe vera gel coating alone or in combination with other organic compounds has shown great potential as a food-safe and eco-friendly coating for maintaining the quality of fruits and vegetables over extended period and reducing postharvest losses in the supply chain. PRACTICAL APPLICATIONS: ALV gel is a plant-based natural coating of eco-friendly nature. The present review summarizes the updated information of ALV gel coating application, methods of extraction, combinations with other postharvest coatings, and its impact on quality of various fruits and vegetables. It also provides future insights for the development of commercially applicable ALV gel coating protocols through simulation studies. So, being a natural coating, ALV gel has tremendous potential to be used in fruit and vegetable industries around the globe.


Assuntos
Frutas , Verduras , Antocianinas , Expectativa de Vida , Preparações de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA